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. Conclusions and links between scales

1. Nature of radiation damage and effects.
. Introduction to lattice defects and their properties:

> Vacancies and clusters
> Self-interstitial atoms and their clusters
> Secondary phases

. Defects mobility and diffusion properties

> Point defect diffusion
> Cluster motion
> Interactions between defects

. Defects formed in primary damage and damage

evolution.
Radiation damage as microstructure evolution

General formulation of microstructure evolution
problem

Methods of microstructure evolution modeling:
> Rate theory

> Mean field approximation
> Kinetic Monte Carlo




The phenomenon of radiation damage

Damage of materials due to irradiation with energetic
particles, Radiation Damage, is a very specific phenomenon
that is characterized with the following important features:

1. Continuous production of lattice defects due to collisions at
primary damage stage and, therefore, continuous increase of
the material energy.

2. Motion (diffusion) of radiation induced defects governs
microstructure evolution under conditions far beyond the
thermodynamic equilibrium that cause enhanced diffusion
(Radiation Enhanced Diffusion), changes in phase stability and
formation of new high-energy microstructures such as defect
clusters, secondary phases, dislocations and dislocation loops,
efc.

3. Accumulation of radiation damage puts material into a
highly non-equilibrium state and the processes occurred cannot
be considered from thermodynamic equilibrium criteria.
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The phenomenon of radiation damage

All above makes theoretical study of Radiation Damage
to be a specific area of solid state physics where many
operating mechanisms do not exist under equilibrium
conditions.

Here we will consider just some basic mechanisms and
defect properties that play important role in the process
of radiation damage of materials.

4 Managed by UT-Battelle
for the Department of Energy




Motivation: effect of irradiation microstrucure on mechanical properties

Fe, n-irradiated at 60°C (Zinkle & Singh JNM 2006)
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Motivation: effect of irradiation microstrucure on mechanical properties

Decoration & rafts: Mo [n]
- Singh & Evans (1997)
- Yamakawa & Shimomura (1998)
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Motivation: effect of irradiation microstrucure on mechanical properties

- dislocations under stress move through field of irradiation-induced obstacles
- dislocation loops, SFTs, point defect clusters, voids, precipitates, etc.

Deformed Cu, n-irrad. 0.01dpa
(a) homogeneous, (b) localised
(Singh et al. JNM 2001)
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stress, MPa

shear stress, MPa
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Some effect of radiation damage

formation and growth of defect clusters and dislocation loops \ matrix hardening
radiation induced and enhanced diffusion leads to:

- change in phase stability

- segregation \ grain boundary embrittlement

- precipitation \ precipitate hardening

formation and growth of voids and gas bubbles \ swelling

anisotropic diffusion \ radiation growth

stress induced diffusion \ creep

20%CW 316 steel irradiated
at T=523C 1.5x1023n/cm?2

* n-irradiation

\ defect production (‘primary damage’) in displacement cascades:

neutron %/'.

o \ single vacancies and self-interstitial atoms (SIAs)

+ clusters of SIAs (= small dislocation loops - may be glis
PKAY\ @ + clusters of vacancies (dislocation loops in some cases
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Self-interstitial atoms (SIAs)
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Bf — SIA clusters in Iron
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Fig. 5. Size dependence of the stabilities of (111} and (100}
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Willaime, Fu, Marinica, Dalla Torre, Nucl Instrum Meth B (2005)



Dislocations and dislocation loops: Burgers vector b

As defect clusters increase in size they become
dislocation loops (interstitial or vacancy) or SFTs (vacancies in FCC) or cavities (vacancies)

BCC FCC
<100>

/
%<11> O A
@ =8
Q@ ¢

{111} planes: 3-fold stacking sequence
> faulted loops with b = 2<111>

Stacking fault tetrahedron (SFT)

. 0.1um / -
, SRR LR < [=">
- \ — /
- Fipure 5.17 Transmission electron micrograph of tetrahedral defects in
quenched gold. The shape of the tetrahedra viewed in transmission depends on

n with respect to the plane of the foil, (110) foil orientation.

Vacancy content equivalent to triangular faulted loop Phil. Moo 6 13119611
- distributed over four {111} triangular faces Growth or shrinkage requires jog lines (ledges)
- stacking fault faces + 6 edges of stair-rod partials A
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Examples of defect clusters in Cu formed in MD cascades
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Voskoboinikov, Osetsky & Bacon, J Nucl Mater (2008)

Fig. 5. Computer-generated visualisations of damage created in 25 keV cascades at 100 K where the defects are either (a) well-dispersed or (b) localised. Vacant sites and
displaced atoms are shown as dark and light grey spheres (red and cyan in colour versions), respectively.

\ single vacancies and SIAs
+ clusters of SIAs: small dislocation loops b = :<111> (sessile) or $<110>
(glissile)
+ clusters of vacancies (small cavities or SFT-like arrangements)
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MD simulations of cascade damage in Fe

i-clusters

Calder, Osetsky & Bacon, Phil Mag (2010)

[ww UNIVERSITY OF

‘% LIVERPOOL

\ single vacancies and SIAs
+ clusters of SIAs: small dislocation loops b = $<111> (glissile) or <100>
+ clusters of vacancies (small cavities or dislocation loop arrangements)
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Binding energy of clusters in Cu and Fe
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MS simulation

Frank loops have lower binding energy

MD simulation

SFT: stable up to 900K for at least 2ns

Frank loops and perfect loops: at T>300K
transform into SFT-like configurations

E, much higher for SIA
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Stability of vacancy and interstitial clusters (dislocation loops)

B
: 2 __T_Ef j i o oA & Loops grow/shrink by
A2 —A— ¢, __va_— climb (absorption or
B A, —— . - .. emission of point
Az Ao . AC 4 defects)

Point defect dilatation :V,Y ~-0.2Q , V,' ~+1.2Q0 Formation energy : E{/ > E;
Binding energy of SIAs in interstitial loops > that of vacancies in vacancy loops

(a) Drift mechanism due to dislocation/loop stress field
Superimposed on random migration due to relaxation volume of point defect V.,
For a interstitial loop of radius r' :
dr i/dt a (+DicV,} - D¢'|VY]) : drY/dt a (-DicV,i + D¥c¢'|V,"[)
Since DY << Di at temperatures of interest and |V,¥| < Vi :
dr /dt a +Dic'V/ and drY/dt a -Dic'V,!

\ interstitial loops grow prefentially in point defect flux (‘dislocation bias')
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Stability of vacancy and interstitial clusters (dislocation loops)

(b) Thermal emission: Interstitial loop can grow by vacancy emission and
shrink by interstitial emission. When it does so, its energy increases or
decreases by AE,. Thus the formation energy of a point defect at the loop
periphery is:

(E;¥ + AE, ) for vacancies; (E;' - AE_) for interstitials
and so the equilibrium concentration of defects at loop periphery is
c = exp[-(E{ £ AE|)/kgT)] = co exp[+AE /kyT)]

where ¢, is equilibrium concentration at T

Therefore the rate of change of interstitial loop radius is
dr//dt a [-Dicy' exp(+AE /kgT) + DVcy' exp(-AE, /kgT)]

Since D¢y = exp[-(E; + E,, )/ksT], then Dicy << D¥cy' and the second term
dominates:

dr i/dt a +Dvc,' exp(-AE, /k;T)
Similarly dr ¥/dt a -D¥cy¥ exp(+AE /kgT)

\interstitial loops grow prefentially due to vacancy emission
at high enough T while vacancy loops shrink |



Stability of vacancy and interstitial clusters (dislocation loops)

C B

C — B -
B !: &8 /& A o — '%A ——_‘ﬁ'_
A= A A . A 0l A

A e & cC—— VA —
C — vV B X a
g = — A - L B — - VB — =
T nE———2

Finally

dr//dt a +Dic'V,' + D¥c,' exp(-AE,/kyT)

dr V/dt a -Dic'V,! - D¥cy' exp(+AE /kgT)
Due to (a) drift interaction & (b) thermal emission:
- interstitial loops are intrinsically stable at all T

- vacancy loops are intrinsically unstable at all T

Some interstitial loops are also glissile (mobile)
- see later
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Migration of single point defects and small clusters in Fe
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Figure 3 Nigration of vacancy-type defects. Enzrgy variation along the most
favourable migration pathways for 1, 15, V5 and V. The vacant sites are represented
by bluz cubes, and their migration jurmps by magenta arrows. The enegy scale

the same as in Fig. 2 for comparison.

Fu, Dalla Torre, Willaime, Bocquet & Barbu, Nature Matls (2005)
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Structure of some SIA clusters in Cu
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Structure of some clusters with 6 = <1115 in Fe

plane (112)

plane (112)
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direct TEM observations (Kiritani,

plane (110)

2000, Arakawa et al, 2005)
One dimensional glide of vacancy

plane (110)
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loops was predicted by MD
then by TEM experiment
(Matsukawa and Zinkle, Science,
2007).
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MD modelling of diffusion due to defects

_<R?> Iron

Diffusion coefficient: D o (n =1 for 1-D, 3 for 3-D)
n
- for self diffusion coefficient D*: R = Raoms ]
T, K
- for defect diffusion coefficient D% R = Rygfact
900 700 500 300
T jation factor: £ = sl o2
racer correlation factor: T D 1073 =
] \%\
= efficiency of defect to produce mass (atomic) transport 9]

1074 ®

NAL
‘“-“Q%

Jump frequency analysis (jump length A, jump frequency v):

defect diffusion coefficient (m?/s)

VAZ 10'11 4l 1SIA diffusion:
D=f —— -same as D¢ 3| -0 D'<E>=0.276ev
¥ © 20 —/\— D" <E>=0.268eV
L L& D' <E>=0.268eV E,=0.293eV E,_=0.191eV
10 f . f . f : . .
. : 1- <cosb > 2 3 4 5 6
where defect jump correlation factor { = ———— /
© 1+<cosb > Tul T

and 9 is angle between consecutive jumps

™

Al

-E

3 Anento, Serra & Osetsky, Model. Simul. In MSE (2010)
kKT
A

E|

Generally D =D, exp

and v= vr.exp[

and E, different for D*, D and v due to T-dependence of f
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MD modelling of diffusion due to defects

segment length in time (ps)
0 10 20 30 40 50 60

T | | | — 19

\ = ST o

; J S | oemseansag et s |
%\g/ : \..‘.qn'@ég&@.* iﬁ %‘ 7

o—TJD

oo
1

defect diffusivity (10°m*/s)
=]

51 ~@-TTD 5
. . .. . E 3SIA_ 9 2
Diffusion coefficient is calculated for each 7 oS0 i | 2
segment and they then are averaged over all 0 10 20 30 40 50
segments. If the length of each segment is segment length (number of jumps)
long enough .to include aII_IocaI correlations and seqmentisnation e bl
the whole trajectory contain a larger enough 0 20 40 60 80
number of segments the treatment can be quite — 323 _ F32
successful. S 301 . ++ 30
. N _ © 28: . %%i]é# 13 ? ¢ 28
Trajectory decomposition technique > 26 %ﬁ 4 DEDE bos
Introduced to improve statistical properties 2 241 & . T ve— 24
. . . s} . 4 S |I= r
of a single trajectory (Guinan, Phys. Rev. £ 22 Je ~20,000 jumps 22
+ 204 .ff_,. simulation time =40ns | toq
1977) 3 al 5] oo o
© 184 TTD -
Later was generalized and improved for 1-D diffusion © 16! D= 28,58x10°m’ls | F1g
Osetsky, (2000), Anento, Serra and Osetsky (20010). 6 T '2.0 A ys :

segment length (number of jumps)
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Early work (2000) using MD to model migration of SIA defets in Fe and Cu

y 600
Fe ]
500.: 37-iin Fe
cn‘ ‘Tw Ng 400-; [117)
> > ap—
= % 8 2004
8 s -
by = w 1007 [110]
£ g— o / 1112]
3 T T T T T T
A 2. 0 1 2 3 4 5 6 7
m_ _ : iy time (ps)
10" <E™> =0.023 eV 6|
0 1 2 3 4 5 6 7 0 2 4 6 8 10
Tm/T T
n_ n m
v'= v, exp(-E"k_T) v," = vewnS, s ~ 0.5

-Single and di-SIAs in Cu are dumbbells and move by translation/rotation
‘Larger clusters move in 1-D due to stochastic motion of individual SIAs
- motion is thermally-activated with low activation energy (~0.02 eV)

*Clustered SIAs in Fe move in 1-D as <111> crowdions
- motion is thermally-activated with low activation energy (~0.02 eV)

Small clusters behaviour depends on the IAP whereas large clusters behave
similarly for all the potentials studied.
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Some mode details on cluster diffusion mechanisms in Fe
(Ackland & Mendelev 2004 IAP):

Migration mechanism:
n=1-3: 3-D

n=4,.5: 3-D +1-D
nx6: 1-D

For 3-D migration, E, low at T >
500 K
E, high at T < 500 K

correlation factor, f
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MD modelling of diffusion due to defects in Fe

Temperature (K)

900 600 400 300 200
. 10_}' ?E" [ITTS FYTHY FRRIE IR N N T T Y ST T TR W | i IJ i I; I_ 1
7] ] 3-D self-diffusion:
e —0— 1-SIA
— 108 4 &— 2-SlAs
5 107 ——3-SlAs
2 —— 4-SlAs
g 10°
L&)
5 * N
2 107%
= ] o
& 107" . -
i1 2 3 4 5 6 7 8 9 10
T./T

Important conclusion:

mass transport efficiency is
decreasing per SIA with increasing

N; |
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D* from atom displacements for N, = 1-4
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MD modelling of diffusion due to defects in Fe (cont'd)

0.5
FromD
‘1 0.4+ . ey
el Thelon ! g/ \ « compared ab initio values for N; = 1-3 at
S U] ,&% A— High _
% E." I||—C>—.t’-‘-.'.nt}ra(_'_;E: 024 a— \\ T = O K
S 03y | . . .
o o | * increase at low T due to sessile trapping
5 | 0.01— : .
§ 02{aal, t 2 3 | .E, saturates at 0.05 eV for N, > 5
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0.1 A ]
N oa 27 2-s1As T=350K |
-~ s 1
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3
5 - these move in 1-D segments after rotation
5 E", (+SiA9-05eV to <111> from more stable <110>
0.1 E" , (d431a)= 0220V

Rotation frequency for 3-i and 4-i
Anento, Serra & Osetsky, Model. Simul. In MSE (2010)
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al/ \03

Diffusion

In early models, SIA is BO or BC

—_
L5,
=]
o

T

500 - K |

atomic squared displacements (a2 )

\
NNM/\{/ /
o LNV /

(a): C3
(b): C2
(c): C4

00 05 10 15 20 25 30

time (ns)

4-i clusters at 250 K
- €1 transforms to C3
- C2 migrates in 2-D
- C3 migrates in 1-D
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4-SIA clusters
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Diffusion anisotropy in Zr due to single SIA

T < 500 K

- migrates 1-D as basal-plane crowdion with low
Er

T > 500 K
- increasing 2-D (basal) then 3-D migration

This results in strong anisotropy at low T
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Diffusion anisotropy in Zr due to
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single vacancy
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Evolution of He under irradiation:

- properties of He-vacancy defects,

- He transport by single and multiple defects;
- bubble equilibrium;

- He clustering examples
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He and He-V Cluster Binding Energy

e Static relaxation

Change in binding energy
as another He
is added to the defect

e ORNL 3 body shows:

Better agreement with
DFT results

Lower B.E. for both He
interstitial and He-V
clusters

B.E. for He interstitial
clusters lowered more
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Incremental Binding Energy (eV)
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Diffusion of He interstitial clusters

Fast diffusion of He-
interstitial clusters is
the first example
observed so far!

AO04 Fe Wilson He 250K 0.0ns

for the Department of Energy




Diffusion of He interstitial clusters

Em Diffusion of center of mass of a He interstitial cluster
° In(D) — In(Do) - 100
K.T
B 1000K
] 10
o Larger clusters diffuse _
slower e 1
. o
— Except He, is S o1
slower than He; and 5
(@]
He, £ 001 E.(eV) D,
S O 1 0.064 28
O 2 0063 9.1
* Open symbols: Cluster s 00013 . 5 55 5
remained intact for the £ vV 4 0313 89
entire 195-30ns 4 6 0278 39 Ackland97 Fe, ORNL HeFe
simulation 1 = —
1 2 3 4 5 6 7 8
e Solid Symbols: Cluster T T (KY)
dissociated or ejected
an SIA Stewart, et al. J. Nucl. Mater. (2010)

ICFRM-14 Conference proceedings
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Equilibrium He/V ratio in bubbles

e The He/V ratio at which the Equilibrium ratio of helium bubbles in iron
dilation curve crosses zero is 0.7 1
plO'ﬁ'Cd 1 —0O—1nm
:V\ —O—1.5nm
e As bubble gets smaller, gap “°1\ o 2mm
becomes more important o X Y
@© 4
— At 1.5nm, gap is ~50% of > o0s R
the volume 2 g v A0——
:ES . \‘D D\DQG\O
= 7 \B
=
§- N\v
Ll
0.3 1
\v
0-2- — T rrr T rrrrrrrrrrrr?

L) L) I L) I L)
0 150 300 450 600 750 900 1050 1200
Temperature (K)
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Helium bubbles o

5%
s
e Simulated 1, 1.5, 2, 4, 6nm bubbles
— Gap observed
) w“*g‘ﬁ’

— Fe surface dilates in/out dep. on He/V ratio cobadile
[ [ [ [ [ &€§
— Equilibrium = zero dilation i

e Eqb. ratio depends on T and d
— Maximum near 1.5nm due to gap
— At low T, larger for larger bubbles

Stewart, et al. J. Nucl. Mater. (2010)
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Effect of facets

e Create a polyhedral 'bubble’ that consists of
only one type of surface.

— Investigate the effect of surface type on equilibrium

{100} faces {110} faces
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He coalescence: MD simulations

e 125 He atoms in box
of 60,000 Fe atoms at
1000K

e He atoms coalesce into
clusters

e Clusters push out SIAs

e Some SIAs trapped
near
He-V clusters

e Multiple trapped SIAs
line up and form
dislocation loops

Stewart, et al. Philos. Mag. (2010) Fe 1000K 20893ppm He 0.0ns
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He coalescence: MD simulation

1,024,000 Fe atoms, T = 1000K, Time

2089 appm |
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He coalescence: MD simulation

o Lower concentration gives fewer but bigger clusters

Vacancy concentration, 600K

100
90 —— 125He 2089 appm He
—— 125He 976 appm He
80 ——— 1000 He 976 appm He
20 —— ©500He 488 appm He

Vacancy concentration (ppm)

0.0 01 02 03 04 05 06 07 08 09 10
Time (ns)
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Other mechanisms (known but not covered here):

1. Interactions involved SFTs in fcc metals:

SFT is a vacancy type defect and a very unique object - it
is rather stable, does not shrink in interactions with SIAs
or clusters (no recombination) and does not grow in
interactions with vacanciesl!!!

2. Interactions between glissile SIA loops and edge
dislocations:

- dislocation decoration or loop segregation on dislocations
infroduces a significant inhomogenity in the microstructure

3. Interactions between glissile STA loops:
- loop coalescence

- change of the loop Burgers vector
- rafts creation
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Motivation: effect of irradiation microstrucure on mechanical properties

Frequency (%)

Size (nm)
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Decoration & rafts: Mo [n]
- Singh & Evans (1997)

- Yamakawa & Shimomura (1998) : gAK
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There are number of other mechanisms that are
important in many particular cases of microstructure
evolution ==>>

There is a significant need in understanding atomic-
scale details of defects properties and reactions!
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Radiation effects as microstructure evolution:

o Irradiation induces new defects at a level significantly
above thermodynamically defined level

o Some defects i.e. SIA clusters, He-clusters, etc. appear
only at irradiation conditions

o Evolution of radiation induced defects and their
interactions between themselves and existing microstructure
lead to significant change in the total material's structure
that defines change in physical properties

o Defects mobility is the main mechanism of radiation induced
microstructure evolution
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Radiation effects as microstructure evolution:

dislocation
Vacancy
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Microstructure evolution: general approach

The most general form of diffusion equations for mobile defects:

dC.(r,t
d(t ):DVACV(I‘,I)+(Gv(r,t)+GI)'ﬂRDiCi(r’t)Cv(r’t)’ Boundary conditions:
C,(S)=C¥ j=1.n
dci(rt PRI
%zDiACi(r’t)"'Gi(r’t)'ﬂRDiCi(r’t)CV(r’t)' Ci(S)=C",

Here: €, (R, 1) and C; (R, 1) vacancy and interstitial concentration at vector
R and time #; D,and D;- diffusion coefficients, 6, (R,#)and 6; (R, 1) -
generation of vacancies and interstitials and u; is a mutual recombination
coefficient.

These include only evolution of existing defects but not nucleation. Defect
(void, dislocation loops, secondary phase precipitates) nucleation is a
kinetic process not considered here.

Generally the above equations have to be solved in a crystal with different
type of defects: voids, dislocations and dislocation loops, secondary phase
precipitations, etc. located at positions determined by the radius vectors
{R;, R, .. R} where nis a total number of absorbing defects.
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Radiation Damage Accumulation and
Radiation Damage Theory

Radiation damage accumulation occurs due to defects
production, their motion and interaction with each other and
other defects preexisting or have been built up via the
interaction

Any interaction with mobile defects, structure and life time
of immobile defects proceed with certain rates. The Rate
Theory is a tool specially developed for calculations of the
rates (kinetics).

Any Radiation Damage Model/Theory, existing or may be
developed, is and will be based on Rate Theory!
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Radiation Damage Accumulation and
Radiation Damage Theory

Depending on how rate theory (Transition State Theory,
Chemical Reaction Rate Theory) is used to describe the
process several techniques were suggested to resolve
these problems:

- Mean field approximation (MFA) - continuum approach which
is not limited in space and time however has strong limitations
in spatial correlations and fluctuations.

- Kinetic Monte Carlo (KMC) methods - can consider spatial
correlations and fluctuations but have strong computational
limitations for space and time scales.
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Rate Theory and Mean Field Approximation

Theory of Reaction Rates based on statistical thermodynamics.

Also known as The Transition State Theory or Chemical Reaction Rate Theory,
it was developed by M. Polanyi and particularly H. Eyring following earlier work of R.
Tolman in 1927 and H. Pelzer and the Hungarian physicist Eugene Paul Wigner in 1932.

H. A. Kramers, 1940, Physica (Utrecht) 7, 284

P. Hanggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after
Kramers, Reviews of Modern Physics, Vol. 62, No.2, April 1990.

The problem of escape from metastable states is ubiquitous in almost all scientific areas.
Reaction-rate theory has received major contributions from fields as diverse as chemical
kinetics, the theory of diffusion in solids, homogeneous nucleation, and electrical transport
theory, to name but a few.

The main idea of MFA is to replace all interactions in a many-body
system fo any one body with an average or effective interaction.
This reduces any multi-body problem into an effective one-body
problem.

Point is how to describe the average or effective interaction
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Microstructure evolution: mean field approach

A general diffusion equation in the mean field approximation for
a single absorber (sink) embedded into loss media:

d C;/j(tr,t) :DVACV(r1t) + (Gv(r’t)+G$ )-IuRDiCi(I’,t)CV(I‘,’[) - Dva(r,t)kV21

dCi(r,t) _
dt

DiACi(ryt) + Gi (r,t)',UR DiCi(r’t)Cv(rlt) o DiCi(rit)kiz'

Here A%, ; are the sink strengths of the loss media for vacancies
and interstitials.

Dimensionality of &% is m-2 (k! - the mean 3-D free path)

Sink strength can be obtained by considering a separate
problem of diffusion for each particular type of absorber.

49 Managed by UT-Battelle
for the Department of Energy



Microstructure evolution example:
3-D diffusion and spherical sink

Consider a stationary 3-D diffusion problem of defects near spherical
cavity of radius R (where void radius can be estimated from simple
geometrical approach R= (3x42/4)1/3 , x is the number of vacancies in the
void):

G-k*D(C-C*)-VJI=0=G-k’D(C-C*)-DAC =0,
here ¢* is the thermal-equilibrium concentration (thermal evaporation of
vacancies) and J=- D VC the flux of mobile defects, D the defect

diffusion coefficient.
For the spherical case Laplacian has the form:

1 0( ,0C ®, 1 . 0C 1 o°C
AC==—|r"— |+ — sin & +——— >
reor or) o06r°siné 00 ) r°sin“f dp

The boundary conditions for the defect concentration, C, at the void
surface and infinity are:

C(R):Ce, C*=C°+
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Microstructure evolution : 3-D diffusion and spherical sink

Here all other sinks in the system: voids, dislocations, etc. are considered
in the mean-field approximation as the total sink strength A2. The
procedure is thus self-consistent and the solution is:

R
C =C°+(C”"-C*)1—— -k (r—R ,
(r) +( ){ rexp[ (r )]}
The defect flux, I, through the void surface S=4zR? is
| =-SDVC(r =R),

where the sink strength of the void considered for vacancies and
interstitials:

l,=D,(Cy-C)4zR(1+kR) = (ki (R)) =47R(1+kR),

void
,=D,(C"-C")4zR(1+kR), = (ki4(R)) =47R(1+kR),

where k’ ,k’ are media sink strengths for vacancies and SIAs

v 1

The total sink strength of all voids in the system can be obtained by
integration over void size distribution function, A(R) :

51 Managed by UT-Battelle
for the Department of Energy



Microstructure evolution : 3-D diffusion and spherical sink

kiia ), = [ AR (K2 (R)). ()4ﬁ(R)NV(l+kV<<RRZ>>jz47z<R>NV

R2
ks ). = [dR (ki (R)) F(R) = 47Z(R)NV(1+ki<<R>>jz47z(R>Nv-

Here N, = I dR f (R) is the void number density, (R) is the mean radius
and (R*)is the mean square radius of voids.

Typically, A2, ~ k%, = K ~ 10°?m2 i.e. kI ~ 100 nm, which is in fact a
mean free pass of a 3-D diffusing defect between sinks.

The void radii are much smaller, typically ~ several nm.

Hence, in the vast majority of realistic cases A% = 4x<R>N, with a high
accuracy.

An important conclusion is that void has the same sink
strength for both vacancies and interstitials, i.e. void is a
neutral sink!
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Microstructure evolution : 3-D diffusion and PDs recombination

The above solution:

C(r)=C°+(C~ —C‘ﬂ{l—%exp[—k (r— R)]}

can be used to calculate the rate of recombination reactions between
vacancies and interstitials.

Considering interstitials motion in the coordinate system where vacancies
are immobile their diffusion coefficient is (D; + D,) and taking into account
that D; »» D, , the total recombination rate between vacancies and SIAs
is:

R=4zr, (1+krg )(D +D,)Cin, » 4zt (1+ ke, )DC, = At

D.C.C,,

where R=r,. is the recombination effective capture radius. The
recombination constant is then: u, = 4nr, /).

MD calculations show that the recombination zone around a vacancy, i.e. a
zone where spontaneous recombination of PDs takes place, consists of
100-300 lattice sites, (%”rjfr =(100-300)2 )  that is ~2-3 lattice
parameters thus r.,. is usually about 102! m-2,
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Microstructure evolution :
3-D diffusion, spherical voids and PDs recombination

Conclusions:

- Voids are neutral sinks and absorb vacancies and
interstitial atoms in equal numbers;

- Recombination of vacancies and interstitials also affect
them both equally.

Therefore such a system is not able to
accumulate radiation damage!ll

However, radiation damage exists!

The reason is mainly the existence of edge
dislocations, a necessary part of a material
microstructure!

¥ OAK
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Microstructure evolution:
sink strength of dislocations
To estimate dislocation sink strength we should consider the
following steady state diffusion equations:
0=G - D,AC (r,t)— D,C,(r,t)k?,

0=G - DiACi(r,t) - DiCi(r’t)kZ’

with the Laplacian for defect concentration in cylindrical
coordination system:

10 oC 1(o°C) o°C
AC =— Yo, +— > |+ =
pop\ Op) p°\ob 0z

For the sake of simplicity an edge dislocation is approximated as a
cylinder of a certain radius which is different for vacancies (R) and
SIAs (R) due to the difference in their interactions with
dislocation. The boundary conditions for the case are:

C,(r=R)=0, C(r=R)=0,
G
Dk’

C(r>x)=—, C(r—>w)=

k'
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Microstructure evolution:
sink strength of dislocations

The solution is:
n C.(r) = G 2{1_ K, (kr) }
D k K, (kR,)
C(F— ) =] 1 olk0)
! DK | Ky(kR) |

where K (x) is the modified zero-order Bessel function.
With the above boundary conditions the dislocation sink strength for
vacancies and interstitials are:

(), = P20 Zo=—=0 (K), =20 2= — .
In(j In(]
kR, kR

where p is the dislocation density. R, < R,==>Z,< Z,

The “dislocation bias” is then defined as: py,= (Z; - Z)/Z, (~ a few
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Microstructure evolution:
Standard Rate Theory (SRT)

Consider the case of Frenkel pairs generation and 3-D diffusion of point
defects. For this case the total sink strength in the system is a sum of
strengths of all sinks i.e. dislocations and voids. Equations for defect
balance and expressions for sink strength are:

G= Dva (ktit )V’ G= DiCi (ktit)i ’
(k&) =kl +Z,p0 (K

tot void tot void

)i =k2  +Zp.

Swelling rate, i.e. rate of accumulation of vacancies in voids due to
different flow of vacancies and interstitials to them:

d—8:47z< R>N,(D,.C,-DC,),
dg

where flux ¢ =Gt is irradiation dose, i.e. total number of defects
produces by irradiation during time 7.
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Using above balance equations the swelling rate is estimated as:

d_S_p Adr <R>N,p
dg d(47z<R>Nv+p)2’

where S :%NV <R > is the total volume of voids

The maximum of swelling rate is when defect fluxes are distributed
equally between the both sinks, i.e. when 47 <R>N =p

a1 _P
d¢ max 4

For typical swelling rates observed experimentally, ~1% per dpa, the
dislocation bias is ~ 4x10-2. That means dislocations absorb at mos
4% more interstitials than vacancies.
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Dislocation bias is the basic mechanism of the Standard Rate
Theory, It was predicted by Foreman et al. at 1959, i.e. well
before swelling was observed in vessel steels by Cawthorne
and Fulton at 1966.

Since that the SRT has been used in majority
of theoretical models for radiation damage

SRT is a useful and simple tool as introduction to
Radiation Damage Theory and can be used for simple
estimations. In the case of electron ~1 MeV irradiation
(Frenkel pairs production) SRT is correct if effects
related to the surface and beam size treated properly

59 Managed by UT-Battelle
for the Department of Energy



Current state and future of
Radiation Damage Theory

Practically important damage is produced by high-energy
neutrons and ions when primary damage occurs in displacement
cascades (see lectures by R.Stoller and R.Averbak).

Main lessons learned from MD modeling of high-energy cascades:

> An intensive intra-cascade clustering is a specific effect in high
energy cascades.

> Interstitial clusters are mobile, thermally and kinetically stable
and migrate one-dimensionally. Therefore the reaction kinetics
governs by a combination 3-D (vacancies and SIAs) and 1-D (SIA
clusters) diffusion.

There is no simple balance between the rate of production of single
3-D diffusing vacancies and SlAs, which is in the very heart of SRT basis

New theory have to be developed to account the above features
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Such a complicated kinetics is accounted in the Production Bias
Model (PBM) develop in the last decade of 20 century:

Woo and Singh, 1992, Production bias due to clustering of point
defects in irradiation-induced cascades.

Trinkaus, Singh and Foreman, 1992 Glide of interstitial loops
produced under cascade damage conditions: Possible effects on void
formation.

Singh, Golubov, Trinkaus, Serra, Osetsky and Barashev 1997,
Aspects of microstructure evolution under cascade damage
conditions.

Golubov, Singh and Trinkaus 2000, Defect accumulation in fcc
and bee metals and alloys under cascade damage conditions-towards
a generalization of the production bias model.

Trinkaus, Singh and Golubov, 2000, Progress in modeling the
microstructure evolution in metals under cascade damage conditions;
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PBM as it has been formulated is limited for application for real
materials and large doses. A reason: the Mean Field approximation
is not applicable because 1-D reaction kinetics leads to spatial
correlations between defects: voids, dislocations, secondary
precipitates and so on. Details can be found:

Barashev and Golubov, 2009, Unlimited damage accumulation in
metallic materials under cascade-damage conditions.

Barashev and Golubov,2009, Radiation damage theory: Past,
present and future.

Barashev and Golubov, 2010, On the onset of void ordering in
metals under neutron or heavy-ion irradiation.

There are some other issues related to the SIA cluster
properties which have to be resolved to complete the PBM. This
work is now in progress.
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Kinetic Monte Carlo modeling

The kinetic Monte Carlo (KMC) method is a Monte Carlo method computer simulation
intended to simulate the time evolution of processes that occur with a given known
rate.

The KMC method can be subdivided by how the objects are moving or reactions
occurring. At least the following subdivisions are used:

- Lattice KMC (LKMC) signifies KMC carried out on an atomic lattice.
Often this variety is also called atomistic KMC, (AKMC). A typical example is
simulation of vacancy diffusion in alloys, where a vacancy is allowed to jump around
the lattice with rates that depend on the local elemental composition

- Object KMC (OKMC) means KMC carried out for defects or impurities,
which are jumping either in random or lattice-specific directions. Only the positions
of the jumping objects are included in the simulation, not those of the
'background’ lattice atoms. The basic KMC step is one object jump.

- Event KMC (EKMC) or First-passage KMC (FPKMC) signifies an OKMC
variety where the following reaction between objects (e.g. clustering of two
impurities or vacancy-interstitial annihilation) is chosen with the KMC algorithm,
taking the object positions into account, and this event is then immediately carried
out (Dalla Torre 2005, Oppelstrup 2006).
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Kinetic Monte Carlo modeling

The first publications described the basic features of the KMC method: Young and
Elcock (1966) and Young (1966). The residence-time algorithm was also published
at about the same time by Cox (1965).

Independently Bortz, Kalos and Lebowitz (Bortz 1975) developed a KMC algorithm
for simulating the Ising model, which they called the n-fold way. The basics of
their algorithm is the same as that of (Young 1966), but they do provide much
greater detail on the method.

The following year Dan Gillespie published what is now known as the Gillespie
algorithm to describe chemical reactions (Gillespie 1976). The algorithm is similar
and the time advancement scheme essentially the same as in KMC.

A good introduction is given by Art Voter (Introduction to the Kinetic Monte Carlo
Method, Proceedings of the NATO Advanced Study Institute on Radiation Effects
in Solids, held in Erice, Sicily, Italy, 17-29 July 2004, Series: NATO Science
Series IT: Mathematics, Physics and Chemistry, Vol. 235

It is important to understand that all the reactions and their rates are
inputs to the KMC algorithm, the method itself cannot predict them.
They are usually taken either from lower scale modeling (ab /nitio,

MD, etc), estimated from basic theory or, in some cases, from
experiments.
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Rate Theory and KMC:
comparison in calculating of damage accumulation

10%

T T T T :
G=4x10" dpais Bias 10

313K
- - 423

I OKMC ' RT ' ' Bifas ' 3
—373 K —373 K G=4x10" dpa/s 3
F— — 423 - — 423
cee 473 = = 473
F 0 523 = =523

=

(=]
o
8

=y

Q
N
8

Vacancy Concentration (m 3)
.
L]
1 ]
1]
'
L]
j
.
L)
Total Vacancy Cluster Density
3 2 3
&

-
(-]
[

107

-
o
4

74 o s b s
/" RT in thick bt bl
OKMC i.n thin

10

-
. -_—es e e e e =

3

10" 10 10° 10
Dose (dpa) Dose (dpa)

-5 5

10

Fig. 8. Influence of irradiation temperature on MFRT and OKMC predictions of (a) vacancy concentration and (b) vacancy cluster density.
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« KMC: Low temperatures, high production rates, low doses.
Accounts: spatial correlations, which has not yet been explored

*  MFRT- no limits with temperature, production rate, doses.
Very limited spatial correlations
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RD Theory and Modeling
What is common and what is different?

Common:
«defect properties and interaction
damage accumulation for KMC and RT

Difference:

sscale, spatial correlations
Ab-initio ~103 atoms
MD 107 -10°

Lattice KMC  10° (0.1pm) -~ 10""(1um)

?
Rate theory 1024
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