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Electrochemical Impedance Spectroscopy: Double
Layer Structure
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Microstructural Junctions

Zr  +i- zrH

Could microstructural junctions be
modeled as an RC circuit ?

e

Adopted from: Gleiter, 2009

* Thermodynamic equilibrium dictates
that the electrochemical potential be the
same on both sides of the interface.

® The electrochemical potential difference
is balanced by an electrostatic potential

» Space charge layer is on the order of
0.5 nm




B
Poisson’s Equation

Consider the e distribution

associated with a defect in the 'i »
lattice d’
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Dislocation Potential Field

How does dislocation interact with electric field?
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Wave Analysis - FM, AM, and Harmonics

e Frequency Modulation VA = C

—Wavelengths - Nano, micro, meso
microstructural features assessments

e Amplitude Modulation V =V,
sin ot E =
g SIn ot
-V, variation, &, Variation
—Relaxation -> V = exp (-kt), Ey =

exp (-kt)

— Can determine kinematic behavior




Harmonic Analysis of Induced Voltage

()= > (A sinket + B, coskat)

Gruska 1983



Nonlinear Wave Analysis
Consider the nonlinear wave equation:
cu ﬁzu M A U
a2 OX OX*
Assume a solution of the form:
u(x,t)= Z,B" U (X, )= Up(X,t)+ Bu(x,t)+ B2u,(x,t)+L

For this example take only the fTirst two terms

u(x,t)= UJ10+ﬁw@t}————+WSecond harmonic

Solut S S¢S R
linear

Wave Equation
Assuming a solution of the\(FoiimP.cos(»t)

And substituting the series expansion iInto

the governing equation, a final solution 1s
obtained(xt)= %,Bkng X + P cos(k X — a)t)—%ﬁkzugx cos(2[k x — wt])

Second
harmonsc




Nonlinearity & Ultrasonic NDE
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Nonlinearity Parameter

Determination of the nonlinearity parameter:

* - 2¢2 |A,(h)
hxf?| A

¢, :longitudinal wave speed

f :frequency

h : Propagation distance (specimen thickness)
A, : Absolute amplitude of the fundamental

A, : Absolute amplitude of the second harmonic

2 >
Al

Cantrell,



Dislocations: Dipoles and Precipitates

Precipitates

precipitate

\

dislocation

_ 1672 p,Q (1-v)'C2
G’b

P

oy = dislocation (dipole) density
h = dipole height

~ 205p, r*'Q°(1+ v)C,| S|
- G (-v)f)°

P

r = radius of precipitates

o = lattice misfit parameter between the
precipitate and the matrix (coherency)

v = Poisson’s ratio

f, = volume fraction of precipitates

Cantrell,



Frequency Analysis

FFT of hysteresis measurements — small sensor at a 100Hz.
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QONDE of Reactor Core
Materials

« High levels of neutron fluence
radiation damage can cause
significant degradation to reactor
components

 In-situ non-destructive monitoring
of reactor components will
Increase iIntegrity and operating
capacity

« Use of ONDE with advanced wave
analysis to achieve material state
awareness of reactor core %
materials




Radration Damage Monitor

Design Criteria

—Small
— Cost Effective

High Temperature Capability
Rel1able Property Correlation to

~luence

Replaceable ) e
?p %1.]’2' :
Disposable 7 ol

7
« Relatively lo

activation and ii
halt life '




Si1licon Carbirde Sensor
Material

High temperature capabilities

Neutron doping results In
phosphorous formation —
semiconductor properties

Alteration of polytypes can give
irradiation damage signal

Si1C 1s a reactor core mate




Effect of Irradration:
Neutronics

 Phosphorus doping achieved through
reaction:

S +n -> 3ST +y > SP + (3

* Process driven mainly by thermal
neutrons

« Overall doping rate dependent on
31S1 half life, and rate of P to

S1 reaction:
31p _, 32p _, 32Gj




Irradiation Facility:
MIT Reactor
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lrradration

Environments
« Sample 1:

- 3GV6 facility

—9.63E+17 neutrons/cm?

— Cd ratio of about 200

—24 hour 1rradiation period

« Sample 2:
—3GV6 fTacility
—9_.26E+18 neutrons/cm?
— Cd ratio of about 200




lrradration
Environments, cont.
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lrradration
1rqpments cont.
amp

« 2PH1 facility

—5-10X higher flux than 3GV6
facility

« 2.82E+19 neutrons/cm?
* 226 hour 1rradiation period




Hall Effect

« Hall Effect - establishment of voltage
difference 1n direction transverse to
electric current 1n sample and magnetic
field perpendicular to current flow

Magnetic field (5)

Semiconductor

|
|
"\ I Hall voltage

|
N\ (resourcefulphysics.org)




Hall Effect

Hall coefficient - ratio of electric
field to product of current density and
magnetic fTield:

Ry =

E
iB

Hall coefficient complicated by two
types of charge carriers seen 1In
semiconduntnre fhalacsalackrans):
R . _np‘f +pﬂh
7=

e(npe + ppn)?




Hall Effect

Hall Coefficient Measurements
CSM Physics Department




Results and Analysis
Carrier Density Increase
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Results and Analysis
Collision Efficiency Decrease
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High Frequency Impedance Measurements
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Impedance as a Function of Hydrogen

1
Matthiessen’s Rule
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High Frequency Impedance
Analysis Technique
« Sample holder created to

ensure testing consistency

— AISI A-36 steel base, Plexiglas
for suspension of pancake coil

Plexiglas

D = [1/(fop)]"*

Steel base was needed
since the impedance
reflection depth of SiC is
~11m

Steel




High Frequency Impedance
Analysis Technique

« Sweep through frequencies from O.5MHz-
2.0MHz--even divisions

« Highest fregquencies show most pronounced
changes




Results and Analysis
Impedance Results
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~“Quantum Mechanical Principle of
Thermoelectric Power

Free Electron Model for High S _ AV
Carrier Concentrations — AT

2)) )
K 3 m T a ‘ AV
S:(i— (27.1 e —£- | kTn . | " .
e h Lo - 3\‘ ‘T/ > T
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[ e
B S  Thermoelectric power Spcomen 4
B r Scattering parameter
B A Planck constant
s Boltzmann's constant 7] 2
B Free electron
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B m, Effective mass (m?*)
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Presentation Notes
With high degeneracy of the free electron gas, the resulting thermoelectric power coefficient, , is related to the electron theory through the following expression, the degeneracy of the electron gas at high carrier concentrations is given above.



Where r is the scattering parameter determined by the dominating scattering mechanism, and h is Planck’s constant,  is Boltzmann's constant, n* is the electron concentration, and me is the effective mass. 



Thermoelectric power is dependent upon three factors:  electron concentration, effective mass, and scattering.  



From the free electron model, the electron concentration is directly related to the Fermi energy.  The effective mass describes the rate of filling of the energy states in k space at the Fermi energy level with increasing electron concentration [Park et al., 2003]. The effective mass can be described as h2/d2E/dK2.  The scattering parameter is negligible in these measurements because the nano-voltmeter has very high impedance, thus very low resistance.  

   


Thermoelectric Power
Seebeck Coefficient

e Determined from ratio of
voltage drop to temperature
difference across a material

 Difficult to Apply|™
—Samples are too sma-;

— Conductivity Issues
AV

S="0
AT




Ultrasonics

- High frequency waves are used
to examine structural changes
and bulk defects.

« (F)(N) = speed of wave
propagation, wavelength
correlation to microstructure




SiC Longitudinal Wavespeed
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MiIcroscopy
(with X-ray Diffraction

« High resgqu%!éﬁsfﬁgaing of

structural damage and
modification of SiC

polytypes.

« Structural defect
correlations to QNDE physical
property measurements are
essential to understand the
nature of materiral damage




Gamma Spectroscopy

Gamma Spectroscopy Measurement Apparatus
CSM Physics Department
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Gamma Spectroscopy
Results

Very low radioactivity
— Still enough to be measureable

Primarily Co-60

Other isotopes observed include: vanadium,
chromium, iron, hafnium and antimony

Increasing neutron fluence leads to increased
radioactivity.




Results and Analysis
Cobalt Radioactivity
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Results and Analysis
Increasing Cobalt
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Comparison of Mechanical and Electrical Oscillation
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Temperalure, "G

EIectronlc and Elastic Metallography Lab

Atomic percent silicon

20 a0 4D

5D

6070 80 80 100

e > P+F=C+2+M

P = # of phases

F = # of intrinsic variables to
describe a microstructure

1500 §
1300 4
1100
a0 |
00 4 658 7 °C
[ .5.|
500 fl
A e 30 46 80 80 7o 80 9o 100
nl Waight parceni ailicen 8i
—
Electronic Impedance

zz[R2+LpL—

Z:(R2+(a)m—

1j2 5
wC
Acoustic Impedance

SH

4

. . . ackson 2006
Intrinsic variables a
. A Physical Property
Composition: Microstructure
X-Ray Fluorescence Determination




Conclusions

« Beta Si1C could be effectively used
as an In-situ reactor core
radiation damage monitoring
material.

« High frequency 1mpedance results
are supported by Hall coefficient
and ultrasonic wave analyses and
gamma spectroscopy.

« High frequency Impedance analysis
(with harmonic and frequency
analyses) supported by elastic
wave analyses 1s very promising
ONDE technology for i1n-situ




Future Investigations

« TEM and XRD to visually
determine changes In material
structure relative to QNDE
measurements.

« S1IC with cadmium coating
studies to separate the effects
of fast and thermal neutrons
(nuclear transmutation and
lattice damage).

« ONDE assessment for i1rradiated

P~ = ey - l -



Potentiral Problems

 Further i1nvestigation needs
to be conducted regarding the
effect of fast neutrons on
sensor reliability. A cadmium
coating on the SiC will allow
the magnitude of this i1ssue
to be studied.

« Monitored properties may not
be linear with 1rradiation
damage at high fluence
levels.
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