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Advanced techniques for length detection : 
Fiber optics
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~ 250 research reactors operated in 56 countries (373 in 1975)
2/3 are more than 30 years old

Research reactors in CEA:
-

 

Critical mock-ups

 

(3)
-

 

Prototype reactor (1)
-

 

Teaching reactors (2)
-

 

Material testing reactors (1 + 1 under conception)
-

 

Neutron sources (2)
-

 

Safety studies reactors (2)

EOLE critical mock-up

Research reactors

ORPHEE neutron source

OSIRIS material testing reactor
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Role of Material Testing Reactors

Effective irradiation experiments are required to sustain nuclear energy
•

 

to reduce the existing uncertainties on margins and limits for safety and plant life time 
management of nuclear power plants
•

 

to optimize designs and safety for improved technologies in power reactors 
•

 

to qualify innovative fuels & materials for future reactors

Assessment of material and fuel behaviour under radiation :
from “cook and look”

 

irradiations toward highly instrumented experiments

Research reactors
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OSIRIS

•

 

Thermal power : 70 MW
•

 

Critical achievement : 1966
•

 

Fuel : U3 Si2 (19.75 %)

•

 

Neutron flux 
–

 

Thermal n. : 3 1014 n/cm²/s
–

 

Fast n. (E>0.1 MeV) : 4.5 1014 n/cm²/s

French material testing reactors : OSIRIS
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OSIRIS
French material testing reactors : OSIRIS
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Example of OSIRIS irradiation device:
ISABELLE 1 PWR loop

French material testing reactors : OSIRIS
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OSIRIS irradiation programs

Irradiation of materials :
–

 

PWR vessel steels
–

 

PWR fuel rods 
–

 

PWR internals 
–

 

Zr/Nb

 

alloys (CANDU)
+ refractory (Fusion)

Irradiation of fuels :
–

 

Power ramps
–

 

Increasing burn-up
–

 

Advanced fuels
–

 

Fuel for research reactors : UMo

+ Qualification of instrumentation :
SPND, fission chambers, optical fibres, 
innovative sensors…

French material testing reactors : OSIRIS
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JHR, a new Material Testing 
Reactor under construction 

in Cadarache

French material testing reactors : Jules Horowitz Reactor
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Reactor
pool

Hot cells & 
storage pools

JHR characteristics 
51 m x 47 m

 

+ Φ

 

37 m

JHR power = 100MW
Start of operation 2014

French material testing reactors : Jules Horowitz Reactor
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Up to 20 simultaneous experiments

French material testing reactors : Jules Horowitz Reactor



13JF. Villard, CEA Cadarache (France)      

Thermal neutron Flux Fast neutron Flux

Fuel studies
(up to 600 W/cm with a 
1% 235U PWR rod) Material ageing

(up to 16 dpa/y)

French material testing reactors : Jules Horowitz Reactor
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Generalities about in-pile measurements

Basic science

Design studies

Measurements of 
fundamental nuclear data

Measurements in analytic 
experiments

Prediction / calculation

Measurements in power reactors

Online monitoring

Verifications
Measurements in integral 

experiments
Verification of predictions

In-pile measurements is required
to design and use nuclear systems 

from basic studies to operation
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Generalities about in-pile measurements

Main in-pile measurements needs
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Generalities about in-pile measurements

Particularities of in-pile instrumentation

In-pile instrumentation has to be :
•

 

Reliable (impossible or difficult maintenance on irradiated objects)
•

 

Accurate (to meet scientific requirements; ex: µm dimensional measurements)
•

 

Miniature (narrow location: few mm available) 
•

 

High temperature resistant (> 300°C, up to 1600°C)
•

 

Corrosion resistant (operation in pressurized water, high temperature gas, liquid metals…) 
•

 

Neutron / γ

 

“resistant” (dose > 1GGy/d and > 10dpa/y in Material Testing Reactors)

But finally, in-pile instrumentation is above all :
•

 

Extremely conservative !
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JHR device
Length: 4.5 m
Diameter: 62 mm

Illustration of in-pile constraints

Experimental device in MTRs :
–

 

Safety 
–

 

Provide the suited boundary conditions
•

 

T, P, chemistry …
–

 

Sample holder with the instrumentation
–

 

Connections with an experimental bunker

OSIRIS sample holder
Length: 4 m
Diameter: 24 mm

Cable length > 20m



19JF. Villard, CEA Cadarache (France)      

Illustration of in-pile constraints

Main effects of nuclear radiations on sensors

transmutations : composition changes
damages : 

-

 

alteration of electric insulators 
-

 

wires breaking
-

 

change in mechanical properties
noise current (Compton and photoelectric effects)
heating

Precautions :
- choice of materials

- form (metals, oxides, ceramics…)
- elements  nuclear properties

- remove sensor from radiation areas when possible
- in-situ calibration
- comparative measurement methods…
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In-pile instrumentation : state-of-the-art and global perspectives 1/2

Power reactors

Monitoring and protection mainly rely on :
-

 

Neutron flux measurements (in-core or ex-core) : 
- Fission Chambers (235U deposit) 
- Boron-lined ionization chambers 
- Self-powered neutron detectors (Rh

 

/ V / Co)
- Aeroball

 

Siemens system; γ-thermometers...
-

 

Temperature measurements : MIMS type K thermocouples
+ fluence dosimetry, void factor, etc.

Generation II and III : 
Evolutions but no revolution in short/mid terms…

Generation IV

Future requirements :
• Fast neutron flux
• High temperatures
• Detection in liquid metals
• etc.
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In-pile instrumentation : state-of-the-art and global perspectives 2/2

Research reactors

Research reactors push innovation for in-pile measurements to :
-

 

follow scientific experimental requirements 
-

 

monitor safety criteria (reduction of margins)
-

 

improve core comprehension

Temperature

Neutron fluence

Neutron Flux

Dimensions

Pressure

Better performance
New requirements

Improvements
Innovations
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CEA 
developments

Industrial 
partnerships

•

 

Reactor and Nuclear Services
•

 

Reactors Studies
•

 

Physical Chemistry
•

 

Systems and Structures 
Modeling

•

 

Sensor and Signal Processing 

Involved competences & labs

Scientific partnerships

Structural collaborations

Instrumentation : an open activity suited for collaboration 

•

 

Multidisciplinary
•

 

To cross-fertilise technical cultures and experiences
•

 

Limited property issues
•

 

Training 
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Dimensions measurements

Objectives :
Measure dimensional changes of materials and fuels under irradiation (µm accuracy –

 

mm 
changes):

–

 

Diameter and profiles 
–

 

Elongation of materiel samples or fuel rod cladding

State-of-the-art :
- Magnetic sensors:

 

LVDT and Diameter Gauges

Developments :
- optical dimensional measurements

Dimensions measurements
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Interrogation 
sensing unit 

Sensing 
Head

Resistance 
meter R

RΔ
∝ε S

lR ρ
=Strain GageWire

FBGWavemeter

Phasemeter WLI

λ
λε Δ

∝

nL
λ
πφ 2

=
φ
φε Δ

∝

Λ= n2λ

Fibre

Optical sensor : A sensor that measures a physical quantity based on its modulation 
on the intensity, spectrum, phase, or polarization of light traveling through an optical 
fiber

Generalities about optical fiber sensors
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Generalities about optical fiber sensors

Fiber optics

Cylindrical waveguide made of glass

•

 

Core –

 

thin glass center of the fiber where light travels.
•

 

Cladding –

 

outer optical material surrounding the core
•

 

Buffer Coating –

 

protects the fiber.
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Generalities about optical fiber sensors

Fiber preforms

Drawing tower

Fiber spool

Drawing process
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Optical fiber: a cylindrical waveguide made of glass, with very low index contrast and large

 
core size

core

cladding

Step-index fiber

Δn = ncore – nclad <<1, typical Δn = 0.001 ~ 0.02
Common dopants for SiO2 fiber : Ge, B, Ti

acladcore nnNA θsin22 =−=

dcore

Generalities about optical fiber sensors

Fiber optics
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Generalities about optical fiber sensors

Optical fibers come in two types:
•

 

Single-mode fibers –

 

used to transmit one signal per fiber (used in telephone and cable 
TV). They have small cores (~ 10 microns in diameter) and transmit infra-red light from laser.
•

 

Multi-mode fibers –

 

used to transmit many signals per fiber (used in computer networks). 
They have larger cores(~ 100 microns in diameter) and transmit infra-red light from LED.

NAa
c ×=

405.2
2πλ

Cut-off Wavelength :
λ ≥ λc

 

: monomode
λ

 

< λc : multi-mode 

a : core radius
nc

 

: core optical index
ng

 

: cladding optical index

Types of optical fibers
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Photonic crystal fibers (PCF) 
Micro-structured optical fibers (MOF)

•

 

Light is mainly conducted in holes, not in silica
•

 

Single mode over a wide wavelength range

Generalities about optical fiber sensors
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Definition: a device that converts electrical signal into optical signal

• Lasers
–

 

Fabry-Perot Lasers (FP)
–

 

Distributed Feedback Lasers (DFB)
–

 

Vertical Cavity Surface Emitting Lasers (VCSEL)
–

 

ASE fiber laser

• Light Emitting Diodes (LED)
–

 

Surface-Emitting LED (SLED)
–

 

Edge-emitting LED (EELED)

Optical emitters

Generalities about optical fiber sensors
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Definition: convert optical signal into electrical signal

Types: 
–

 

p-i-n

 

photodetector: photon-electron converter
–

 

Avalanche photodetector

 

(APD): more sensitive for high speed systems

Photodetector parameters:
–

 

Responsivity: the amount of current produced per unit of input optical power
–

 

Wavelength bandwidth: the bandwidth the PD is sensitive to.
–

 

Damage threshold: the maximum optical power the PD can take before damage

Generalities about optical fiber sensors

Optical receivers
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Generalities about optical fiber sensors

Intrinsic: the effect of the measurand on the light being transmitted take place in 
the fiber
Extrinsic: the fiber carries the light from the source and to the detector, but the 
modulation occurs outside the fiber

Environmental signal

Optical fiber

Environmental signal

Input fiber Output fiberLight modulator

Optical sensors
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Light source Focus 
lens

Photo-detector

Light source Focus 
lens

Reflection Measurement

Transmission Measurement

Coupler

Sensing 
element

Photo-detector

Generalities about optical fiber sensors

Typical optical sensors mechanisms
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Point sensor: detects measurand 
variation only in the vicinity of the 
sensor

Multiplexed sensor:
Multiple localized sensors 
are placed at intervals along 
the fiber length. 

Distributed sensor:
Sensing is distributed 
along the length of the 
fiber

Opto-

 
electronics

Output, M(t, Zi

 

)

Opto-

 
electronics

Output, M(t,z)

Opto-

 
electronics Sensing 

element
Output, M(t)

Generalities about optical fiber sensors

Typical optical sensors types
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White-light interferometry 
allows to measure absolute Fabry-Perot cavity length

•

 

compact
•

 

cheap technology
•

 

typical Range: 1000 -10000 µ ε
•

 

resolution: < 0.003 %
•

 

precision: 0.01 %
•

 

bandwidth: 10 Hz

Sensor head

Scanning  Interferometer

Demodulates the signal to recover 
the absolute cavity length 

Broad-band source

Zero order

+ δs- δs

Generalities about optical fiber sensors
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IR Low-coherence interferometry 
based on Michelson Interferometer

•

 

typical Range: -5000 -10000 µ ε
•

 

resolution: 2 µm
•

 

bandwidth: up to 10 kHz

Generalities about optical fiber sensors
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Fiber Bragg Gratings

• Sensitivity: 1.1 pm/µε

• Typical range: +-2000 µε

• Resolution: < 1 µ ε

• accuracy: ~ 1 µ ε

• Bandwidth: 250 Hz

• Temperature: up to 600°C

Generalities about optical fiber sensors
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Compact size 
Multi-functional 
Remote accessible
Multiplexing
Resistant to harsh environment
Immunity to electro-magnetic interference 

Main advantages of optical fiber sensors

Generalities about optical fiber sensors

Presenter
Presentation Notes
Two types of optical fibers (single mode for long haul transmission and multimode for short-distance transmission)
Fiber configuration:
Core: made of Ge-doped silica. 8um core diameter for single mode, 50/100um core diameter for multimode
Cladding: pure silica. 125um in diameter
Buffer/coating: polymer. 250um in diameter
Jacket: plastic for protection

Transmit light by total internal reflection

Optical transmission (light source, focus lens, optical fiber, photodetector) 

Light can be characterized by: intensity (how bright the light is), wavelength (the color of the light), pulse width (for pulsed light) 
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In-pile use of optical fiber sensors

Recent results : new fibers can survive in reactors

Example :

 

COSI experiment (OSIRIS reactor, France – 2006) 

Location of the tested fibers

92 days of reactor operation
Dose > 1E20 nfast/cm-2

> 16 GGy

Irradiation of 12 recently developed optical fibers 
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Tested fibers 

In-pile use of optical fiber sensors

Presenter
Presentation Notes
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In-pile use of optical fiber sensors

General results from COSI experiment:
Radiation induced absorption

• Favorable spectral region in the 800-1200 nm range 
•

 

RIA measured losses < 10 dB suitable multimode and single mode fibers exist 
for in-pile applications

However in-pile optical measurement systems have to be independent of light

 

intensity
interferometry (Fabry-Perot, Bragg gratings…)
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Forc 3 : RIA

Some results from COSI experiment

In-pile use of optical fiber sensors
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BL1 : RIA

Some results from COSI experiment

In-pile use of optical fiber sensors
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Principle of reflectometry

 

measurement

Some results from COSI experiment

In-pile use of optical fiber sensors

Typical retro diffused signal
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Some results from COSI experiment

In-pile use of optical fiber sensors

Results of reflectometry

 

measurements 
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Radiation induces Luminescence 

RIA
Cerenkov

O2

Wavelength [nm]
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Luminescence spectrum in 
200 µm core fiber

Function of the reactor power

Luminescence is not a problem in IR and SM fibres. However, still need to pay 
attention to 1275 nm emission line especially at the end of fibre lifetime

In-pile use of optical fiber sensors
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Radiation changes refractive index and fiber dimensions

Primak, Phys.Rev.B, 110, 6, 1240, 1958

Neutron-induced compaction and associated 
refractive index change in bulk glass

Ln    2
λ
πφ =

In-pile use of optical fiber sensors
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Conclusion : 
some good news but still a lot of issues…

•

 

Radiation-induced absorption (RIA)
•

 

OK if moderate absorption (900-1300 nm)
•

 

Interferometer little affected by moderate absorption
•

 

What happens in the very long term (multiple cycles)?
•

 

Radiation-induced Luminescence (RIL)
•

 

negligible but to pay attention at the end of fiber lifetime
•

 

Radiation-Induced Refractive Index Change
•

 

Still questionable for FBGs
•

 

How to deal with ?
•

 

How to fix the sensors ?

In-pile use of optical fiber sensors
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Lc

Lg

Glass or rather metallic 
capillary 

Lg

 

=10 mm 

Fibre

 

capillary 

Lc

 

= 20 to 100µm

Radiation resistant 
MM Fibre
Core diameter: 50 or 
100µm 

metallic with 
reflective coating 
( insensitive to 

radiation) 

S
am

pl
e 

Lc Lg
Lg

 

=10 mm 

Fibre

 

capillary 

Lc

 

= 20 to 100µm

Radiation resistant 
MM Fibre
Core diameter: 50 or 
100µm 

Pre- compacted
ultrapure MM Fibre

Glass or rather metallic 
capillary 

Optical fiber sensor for in-pile length detection

Optimized elongation sensor
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Sensor

10 mm

Optical fiber
core

 

diam. 50 µm
coating

 

diam. 125/250 µm

Stainless steel capillary
diam. 250 µm Stainless steel rod

diam. ~ 140 µm

Fiber-based extensometer developed by 
CEA/SCK·CEN Joint Lab. to measure the 

elongation of material samples

Status : in-pile qualification in BR2 reactor (Belgium) 
performed at the end of 2009

Major interests :
- Very compact sensor
- Low instrusivity
- High accuracy (< µm)

Optical fiber sensor for in-pile length detection

Optimized elongation sensor
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Measuring the cavity length

Plane wave interference model gives the global 
shape of the fringe pattern
with R1=R2 (same reflexion coefficient on both 

faces):

with ϕ = 4.π.lc

 

.cosθ/λ

With cosθ

 

~ 1
The number of fringes ∆k over ∆λ

 gives lc

 

:
∆k = 2 lc

 

∆(1/λ)

Precise calculation by plotting IR

 

versus 1/λ

 

and through FFT algorithm. 

Optical fiber sensor for in-pile length detection

Presenter
Presentation Notes
 
A plane wave interference model can give the global shape of the fringe pattern

With the same reflexion coeff on both faces of the cavity, you get the well known formula for the reflected intensity out of the FP cavity  
In the term phi you find Lc cos teta divided by L . That gives the figure below when you plot Ir versus L
When Lc increases the fringe pattern changes like that .

We nearly can consider that Teta =1 especially with low NA fiber. 

Then, observing the spectrum over a given wavelength range DL, the number of fringes Dk  give you Lc   
Actually the precise calculation with labview is made by plotting Ir versus 1/L. That give a periodic function.  You easily can get the period and then lc through FFT algorithm. 
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Modulation depends on:
-fiber core diameter 
- NA
- cavity length
- angle/misalignment

Measuring the cavity length

Optical fiber sensor for in-pile length detection

Presenter
Presentation Notes

Whatever is the conditioner, the modulation or visibility must be high in order to assure the precision of the reading

What we call “modulation” and plot on the figures on the next slide is just the difference between max and  min on the plot in db or dbm of the reflected intensity captured by the OSA. 

As you can imagine, with the calculation described, we can extract lc from a fringe pattern with very low modulation (0,5bd visibility 0,05) but that induce loss of accuracy. 
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Modulation changes with lc, F, angle

0

1

2

3

4

5

0 50 100 150

 cavity length (µm)

m
od

ul
at

io
n 

(d
B)

fibre core:50µm

fibre core:100µm

-> larger cavities more difficult to measure
-> smaller diameter to be preferred
-> angle tolerance ~ +/-

 

0,3°

 

(~ 5mrad).
-> ( low NA preferable).

Φ= 50µm
R1 ≠

 

R2
NA = 0.13
lc

 

= 35 µm

Cavity with uncoated fiber
NA = 0.2

Optical fiber sensor for in-pile length detection

Presenter
Presentation Notes



We have some experiments:
On the left is a preliminary mesurement with the modulation ploted versus lc fc for 2 core diameter. At that time NA was high. 

On the right  is the modulation versus angle betwwen the 2 faces.
  
The conclusion for our configuration is that:

Angle tolerance includes perpendicularity of the faces, as well as misalignment in the capillary.
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Optical fiber sensor for in-pile length detection

Experimental results for length detection

Cavity length Lc (µm)
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Other potential in-pile applications of optical sensors

Other potential in-pile applications of optical measurements

• High-temperature pyrometry
Suitable for surface temperature measurements > 1000°C

• Measurement along fibers using stimulated scattering
-

 

Raman temperature distribution 
(ex : monitoring primary coolant circuit)

-

 

Brillouin temperature / deformation

Unstressed fiber

stressed fiber

Bragg gratings

Spectral 
shift

Wavelength

• Distributed measurements
Bragg gratings temperature, deformation, pressure, etc..

Hot sample
IR emissionOptical head
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Infrared pyrometry

Principle :
Remote high-temperature measurement, with auto-compensation 
of RIA

+ low intrusivity
+ no interface problem (no contact with sample)
- surface temperature measurement
- requires good optical transmission between probe and sample

Signal acquisition and 
processing system 

Optical 
fiber

Optical head

Measured surface

Hot sample

Other potential in-pile applications of optical sensors
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