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Faculty-Student Research Team (FSRT)

‣ In 2009, the ATR-NSUF funded two faculty-
student research teams

‣The Missouri S&T/Colorado School of Mines team 
consisted of 3 faculty and 4 students
– Dr. Jeffrey King, Missouri S&T/Colorado School of Mines
– Dr. Brian Gorman, Colorado School of Mines
– Dr. Greg Hilmas, Missouri S&T
– Vaibhav Khane, Missouri S&T
– Rita Kirchhofer, Colorado School of Mines
– Torey Semi, Colorado School of Mines
– Melissa Teague, Missouri S&T



FSRT Goals

‣ The goal of the Missouri S&T/Colorado School of Mines team 
was to combine post-irradiation examination and 
computational methods to enhance the capability to analyze 
and model high-burnup reactor fuel

‣ This evolved into four parallel lines of inquiry
– Microstructural investigation of high-burnup uranium oxide fuels (Melissa 

Teague)
– Microstructural investigation of TRISO fuel compacts (Rita Kirchhofer)
– Atomistic modeling of vacancy and noble gas transport in uranium oxide 

(Torey Semi)
– Microstructural FEA analysis of U-Mo dispersion-type fuels (Vaibhav 

Khane)
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SIMFUEL Development
● Used MCNPX to calculate 

145 GWd/tM Burn-up 
LWR fuel composition

● Selected the 10 most 
abundant elements

● Made substitutions based 
on availability and 
chemical compatibility

● BaCO3, CeO2 (Np) , La2O3 
(Am, Cm), MoO3, SrO, 
Y2O3, ZrO2, Rh2O3, PdO, 
RuO2 (Tc), Nd2O3 (Pr, Pm, 
Sm) 

SIMFUEL Composition (by weight %)

  

ZrO2 90.96%

CeO2 1.93%

ZrO2 1.28%

MoO3 1.48%

Nd2O3 1.26%

PdO 1.30%

SrO 0.26%

BaCO3 0.76%

La2O3 0.44%

Pr2O3 0.33%



Processing of SIMFUEL

• Pellets uniaxially pressed at 4 ksi
• Cold Isostatic pressed to 35 ksi

• Sintered under 90/10 Ar/H2 up to 
1650°C at 10°C/min, then natural 
furnace cooled

• Thermally shocked upon cooling, 
indicated slower cooling rate 
needed. SIMFUEL 

sintered at 
1650°C for 30min 
in flowing 90/10 

Ar/H2



Characterization of SIMFUEL

● Mechanically 
polished to 
1200 grit

● Used FIB to mill 
3 trenches for 
monopole 
installation 



EBSD

● Milled at grazing 
incident angle

● Rough Milling
● 30 kV
● 6° tilt
● 15 nA

● Cleaning
● 5 kV
● 6° tilt
● 8 nA



EBSD Patterns

● Collected using 
OIM software

● Indexed to 
m3m cubic 
ZrO2
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TRISO Specimen Preparation

● Sample preparation of 
a TRISO compact and 
individual particles

● Use focused ion beam 
milling to prepare 
specimens for further 
analysis

– Special interest in 
milling the interfaces

– Prepare surface for 
EBSD analysis



Focused Ion Beam Milling

● Milling at the interface of the SiC and PyC 
layers
● Milling rates are different for the different 

materials
● Can obtain a great surface fnish



Sample Preparation for EBSD

14

• S pecimen preparation for EBS D
– S pecial interest in the S iC  layer and PyC of the TR IS O coated particle.

• EBS D analysis of the S iC
– Get polymorph information

Prepared Surface



Sample Preparation for EBSD
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• Reduce curtain effect by using a low accelerating voltage (also 
reduces amorphization) 

• Need to use Pt layer to protect against ion impingement



EBSD Patterns for SiC
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• EBS D data obtained after 
surface preparation with the 
FIB

• Determine crystallographic 
information:
– Lattice parameter
– Crystal structure

• EBS D mapping 
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Xenon and Krypton
Noble gases cause two major problems in 
high-burnup nuclear fuels:

• Fission gas bubble swelling
– Leads to degradation of fuel integrity
– Reduces local thermoconductivity

• Gas release from reactor fuel
– Can lead to breach of cladding
– Release of radioactivity



Fundamental Questions
● Where do FP gas atoms settle in lattice?

● How do these atoms come together to form small clusters?

● Can the clusters move?

● Do bubbles (large clusters) form? Is there a limit on their 
size?

● Can bubbles move?

● How do FP gas atoms end up at grain boundaries?

● What role do vacancies play in all of this?



Research Strategy

● Focus on uranium dioxide

● Use density functional theory (DFT) for 
confguration, mechanical and diffusion 
studies.

● Elucidate motion of fssion product atoms 
and formation/motion of small clusters of 
fssion product atoms



Research Strategy, cont.

● Vacancies
– One U vacancy, no strain:

● Goal: Determine diffusivity of vacancy
● Method: Transition State Theory (activation energy)

– Modify vacancy, perform similar calculations
● Frenkel Defects
● Schottky Defects

– Add strain:
● Account for Soret effect, temperature gradients, other 

forces
● Model by lattice dilation
● Repeat goals using same method



Research Strategy, cont.

● Gas atoms (Kr)
Introduce into (vacancy) defects

Determine energetically preferred defect site
● Frenkel, Schottky, O vacancies, U vacancy

● Clusters
● Quantify tendency of motion of N>1 

vacancies, Kr atoms
– Agglomeration
– Energy barriers
– Temperature dependence
– Critical size

● Describe fate of O atoms



Density Functional Theory

Primary principle:
Any property of a system of many 
interacting particles can be represented as 
a functional of the ground state density.

● Scalar function of the ground state density determines all 
information in the many-body wavefunctions for the ground 
state (and in principle, all excited states)

● Can solve Schrodinger equation for 3 variables instead of for 3N 
variables

● DFT does not specify how to formulate these functionals!!



Calculational Methods
● VASP

● plane-wave pseudo-potential code
– treats core electrons as inert
– calculations done on valence electrons only

● uses PAW potentials 
considered best available

● RSPt
● all-electron code (LAPW)
● FP-LMTO
● advantage: can massage potentials to work with f-

electrons that may penetrate core
● disadvantage: settings can be diffcult to choose for 

convergence
● codes are complementary
● exchange-correlation functionals: LDA, GGA



2x2x2 UO2 Supercell



UO2: Lattice Constant Calculations



Possible U(Pu) Vacancy Path



Future Work
● change number of ionic iterations
● use output from previous calculations for 

refnement
● compare results from different functionals
● set up different paths
● do same calculations with RSPt
● determine activation energies, compare to 

literature
● add more vacancies, use different defects
● add strain
● repeat with Kr
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MTR-type Reactor Fuel Evolution
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Irradiated U-xMo Fuel Microstructure
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Fuel Performance Modeling

● Qualifying a new reactor fuel and gaining NRC approval is 
a complex, many year (think decades) process

● One key aspect of this process is developing fuel 
performance codes to predict fuel behavior as a function 
of time, temperature and burn-up
● Fuel performance codes are, in some ways, the ultimate 

repositories for what we know about a fuel

● Each major fuel type has an associated fuel performance 
code(s)
● LWR – FRAPCON
● TRISO – PARFUME, et al.
● RERTR – PLATE, MAIA, et al.
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PLATE Fuel Performance Code

● Plate Lifetime Accurate Thermal Evaluation
● Developed at the Idaho National Laboratory
● Uses empirical correlations for the growth of the 

interface layers with time and burnup 
● Effective thermal conductivity of the fuel is 

predicted by a simple analytical model for 
multiphase material
●  Modifed Hashin & Shtrikman equation
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Current PLATE Assumptions
● Fuel particles are perfectly spherical & interaction 

layer formed around particle is uniform 
● Model doesn’t take into account packing 

arrangement of fuel particles in matrix
● Validation of effective thermal conductivity model 

is warranted
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Micro-structural FEA Technique
● Based on the Object Oriented Framework 

(OOF2) 
● Developed by NIST (open-source)
● Based on open-source tools available in linux or 

OS X environments
● Converts a 2-D image to an FEA mesh
● Resulting mesh can be analyzed with the 

built-in solver or exported to a more 
advanced FEA package (e.g. ABAQUS)
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Validation Flowpath

Original image (optical micrograph)

Processed Image (GIMP)

FEA Mesh (OOF)Vc = ?
(based on pixel count)

kFEA-x = ? W/m-K

K
FEA-y = ? W/m-K

(OOF-FEA) 

KH&S = ? W/m-K
(modifed H & S equation)



37

Prediction Comparison
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6-V1R010 Micrograph

V
c = 0.62

kFEA-x = 41.9 W/m-K

K
FEA-y = 43.1 W/m-K

KH&S = 44.2 W/m-K
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6-R3R030 Micrograph

V
c = 0.51

kFEA-x = 54.2 W/m-K

K
FEA-y = 47.8 W/m-K

KH&S = 66.7 W/m-K
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6-V1R010 Micrograph (with pores)

V
c = 0.78

kFEA-x = 26.7 W/m-K

K
FEA-y = 27.1 W/m-K

KH&S = 24.8 W/m-K
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6-R5R020 Micrograph (with pores)

V
c = 0.92

kFEA-x = 13.4 W/m-K

KH&S = 12.4 W/m-K
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6-R5R020-38N Micrograph

V
c = 0.77

kFEA-x = 20.6 W/m-K

KH&S = 19.3 W/m-K
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RERTR Results

Source of 
microstructure

Volume 
fraction

(Vc)
FEA results

(W/m-K)

Analytical 
model 
results

(W/m-K)
Difference 

(%)

x-dir y-dir x/y x-dir y-dir

6-V1R010 plate 0.62 41.9 43.1 0.97 44.2 +5.2 +2.5

6-R3R030 plate 0.51 54.2 47.8 1.13 66.7 +18.7 +28.3

6-V1R010 plate 
(with pores) 0.78 26.7 27.1 0.99 24.8 -7.7 -9.2

6-R5R020 plate 
(with pores) 0.92 13.4 -- -- 12.4 +8.1 --

6-R5R020-38N 0.77 20.6 -- -- 19.3 +6.7 --
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Observations

● Finite Element Analysis (FEA) of the microstructure of 
irradiated uranium/molybdenum fuel plates offers the 
opportunity to validate the results of the PLATE fuel 
performance code

● The Hashin and Shtrikman correlation used in PLATE assumes 
a uniform distribution of spherical particles in the matrix

● The effect of the interface layer is considered in the 
composite thermal conductivity of the particles

● Shape and arrangement effects are neglected
● Image-based FEA of actual fuel plates can account for the 

interface layer directly, as well as including the shape and 
arrangement effects
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Observations, cont.

● Generally speaking, the thermal conductivity model in the 
PLATE code produces satisfactory results
● Some sensitivity to large particles and non-regular particle 

arrangements

– Differences of up to 32% for high particle volume fractions
● Both under- and over-predictions occur

● At low volume fractions, the effect of pores on the effective 
thermal conductivity is minor

● No strong evidence of anisotropy
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