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Introduction/Background
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What is a Fuel Performance Code?

LWR fuel element is a simple object, but.. 
•

 

It evolves during its service life, e.g.,
–

 

Thermal and mechanical changes;
–

 

Physical and chemical changes
•

 

These changes occur in the fuel pellet, cladding, and 
–

 

Within and at the gap; involving pellet-clad interactions. Also, in 
upper and lower plena

Given the initial geometry, operating conditions, and power 
history:

•

 

Q: Will the fuel element serve its primary function?
–

 

Generating power in commercial reactors without failing
–

 

Meeting aims and objectives of an irradiation test
•

 

A: Is obtained through analysis. The computational tool that is used 
for this purpose is a Fuel Performance Code
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Types of Fuel Performance Code

•
 

Some codes are steady-state while others are transient:
–

 
Steady-state ignore transient terms;

–
 

Transient codes ignore long term phenomena like 
creep (or treat them as quasi-steady series of steps)

•
 

Depending on how fuel behavioral and phenomenological 
models are treated, a FPC can be:
–

 
Empirical/Semi-empirical

–
 

Best estimate
–

 
First principle (with or w/o adjustable parameters)

Or, a combination their of

Caution must be exercised in code-to-code comparisons
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Key LWR Fuel Rod Performance 
Considerations

•
 

Fuel poolside (non–destructive) measurements
–

 
Rod growth (dimensional change)

–
 

Waterside corrosion (eddy current)
–

 
Cladding diameter change (profilometry)

–
 

Fission gas release (Kr-85 in plenum) 
•

 
Design limits
–

 
Fuel centerline temperature

–
 

Hydrogen pickup by cladding
–

 
EOL pressure

–
 

Clad strain < 1% (elastic + plastic)
•

 
Analyses needed for “zero-by-ten”

 
industry goal, e.g.,

–
 

Maximum Clad stress/ damage due to fuel duty
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Requirements of a Fuel Performance Code

•

 

Computational structure and numerics, e.g.,
–

 

Finite element or finite difference?
–

 

1D, 2D, or 3D…generation of computational grids
•

 

Initial geometry, operating T/H conditions, and power history
–

 

Design of the fuel rod
–

 

Operating T/H conditions are time-dependent 
–

 

Power history is ultimately obtained through core-follow neutronics

 codes
•

 

Material properties functions
–

 

Evolution of the properties with burn-up (alternatively, with time or 
neutron fluence)

•

 

Behavioral and phenomenological models

Providing correct inputs is the first important step
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Input Requirements (details)

•

 

Fuel pellet material, dimensions, and as-fabricated characteristics 
e.g., enrichment, porosity, surface roughness

•

 

Cladding material, dimensions, and as-fabricated characteristics e.g., 
mechanical properties, surface roughness

•

 

Fuel rod dimension, upper and lower plena

 

heights, end plug lengths, 
axial blanket height, initial fill gas composition and pressure

•

 

Coolant pressure, temp, mass flow rate, hydraulic diameter/fuel rod 
pitch

•

 

Power history :
–

 

Core-follow Assembly average power
–

 

From Assembly average power Average rod power (radial 
peaking)

–

 

From Average rod power Axial position (node) power 
(Normalized axial power shape function)

–

 

From Nodal power to local radial power distribution in the pellet 
due to Pu

 

redistribution
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Fuel Pin Power and Thermal Data 
Reconstruction

•
 

Extraction and transformation of data
–

 
Lattice codes and core simulators
•

 
Lattice codes –

 
PHOENIX, CASMO

•
 

Core simulators -
 

MICROBURN-B/P, SP-NOVA, 
SIMULATE, etc.

–
 

Thermal hydraulic codes -
 

VIPRE, RETRAN, etc.
•

 
“Manual”

 
processes used to obtain tab delineated file for 

importation into FalconRD
–

 
User-developed methods based on particular data form 
combinations
•

 
Numerous vendor and utility method combinations
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Fidelity of a Fuel Performance Code

•

 

Grid structure
–

 

Ability of the axial and/or azimuthal

 

grids to capture the changes;
–

 

Most fuel performance codes are 1D or 2D
Often have to optimize between computing power and complexity/ease of 

use
•

 

Time-stepping to properly capture:
–

 

Steady vs

 

transient (What exactly is “steady-state”)?
–

 

Full thermal and mechanical coupling 
•

 

Material properties changes and behavioral and phenomenological models 
with correct dependencies 
–

 

Latest data obtained from separate effects tests and test reactor 
programs

–

 

Theoretical framework of the models including adjustable parameters

Clearly defining the analysis being sought and understanding 

constraints around results obtained is another important step
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FEM Module – Grid Generation

Mode 3 -

 

r-θ

 

Grid

Mode 2 –

 

2 D r-z

 

Grid Mode 1 –

 

1 D r-z

 

Grid

Nodal Point

Gauss Point

2D Element Equivalent 1D Elements

Flow Channel Flow 
Channel

Mode - 2 Grid Mode - 1 Grid

CL CL

N2

N1

Axial Segments

Cladding

Fuel Pellet

Missing Pellet Surface
Zirconium
Liner

Fuel Pellet Crack
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FEM for Temperature and Displacement Fields

•

 

Allows for a single compatible 2-D grid between both thermal and 
mechanical modules
–

 

Simplifies the numerical algorithms
•

 

Uses quadratic interpolation (shape) functions in the fuel and 
cladding
–

 

Minimizes the required spatial nodalization
–

 

Captures parabolic temperature distribution in fuel pellet
–

 

Consistent with cladding large strain deformation analysis

x

xxx

xxx

xx

T(ξ,η)

Integration Point

8-Node Quadrilateral 
Element
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FEM Nomenclature

T , u , w1 1 1T , u , w2 2 2

T , u , w3 3 3 T , u , w4 4 4

T , u , w5 5 5

T , u , w6 6 6

T , u , w7 7 7

T , u , w8 8 8

T , u , w9 9 9

1

2

3

4

5

6

7

9

8

Integration Point

Node

Nodal and Integration (Gauss) Point Variables

Node Field Variables
T – Temperature
u – Displacement in 1-direction
w – Displacement in 2-direction

Integration Point Variables
Stress in i,j,k directions
Strain in i,j,k directions
Heat flux 
Fission gas production, grain and grain 
boundary concentration, and release



15© 2010 Electric Power Research Institute, Inc. All rights reserved.

Calibration, Verification, and Validation

•

 

“Calibration”

 

is assigning values to the adjustable parameters in 
models

–

 

Separate effect tests (e.g., cladding corrosion or  growth)

•

 

“Verification”

 

is to confirm that the code predications from dedicated 
test-rod data irradiated under controlled conditions 

•

 

“Validation”

 

is an exercise to compare code prediction with the gross 
performance observed in LWRs

–

 

Includes complex interactions (e.g., growth-creep, corrosion-crud)

–

 

Selected cases used to fine-tune the code, then freeze the code

Avoid tendency to “always adjusting” the code

Be aware of “garbage in; garbage out”
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Fuel Rod Types and Burn-up Distribution

Benchmark Rods 
(~50)

Steady State Test 
Program Rods (~120)

Transient Verification 
Cases (~50)

Steady State 
Commercial Rods 

(~220)

Avg Rod Burnup, MWd/kgU
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Burn-up Distribution of Commercial Rods

Variety of fuel rods available to develop 
and test the capabilities of FALCON
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Basics of Thermal and Mechanical Modeling
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Thermal-Mechanical Iteration Scheme

Repeated for five (5) iterations in FalconRD

1)

 

Temperatures are solved using specified power and thermal boundary conditions
–

 

Gap conductance calculated using fuel rod deformations from previous step
2)

 

Fuel rod deformations are solved using the new temperature distribution from (1) 
and mechanical boundary conditions
–

 

Rod internal pressure from previous step

3)

 

Thermal solution repeated using updated fuel rod deformations from (2)

4)

 

Mechanical solution repeated using updated temperature distribution from (3)

First Iteration –

 

Start of Time step

Second Iteration

Use final temperature distributions and fuel rod deformations to

 

calculate 
fission gas release, rod internal pressure, and cladding oxidation

End of Time step
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Thermal-Mechanical Coupling
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Temperature is the Most Important Driver

ρ

 

– material density
Cp – heat capacity
kij – thermal conductivity tensor
Q – volumetric heat generation
t – time
xi – Spatial coordinates
T – Temperature

0Q
x
Tk

xt
TC

j
ij

i
p =−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

−
∂
∂

ρ

•
 

Most material properties are temperature dependent
•

 
Temp also a key parameter in: fission gas release gap 
conductance
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Volumetric Heat Generation

•
 

Fission heat generation in pellet
–

 
Considers radial and axial variations

•
 

Gamma heating in cladding and coolant
–

 
Proportional to the fission power

•
 

Heat of zirconium oxidation
–

 
Result of high temperature oxidation process

•
 

Radioactive decay heat from fission products 
–

 
1979 ANS-5.1
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Typical temperature range in fuel (300 – 
1200ºC)
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Steady State Temperature Distribution in the Fuel: 
Compare Code Results with Analytical Solutions in 
Simplified cases

•
 

Simple form of fuel 
conductivity

t gap

t c

Cladding

Fuel-cladding gap
(filled initially with ~10 atm He )

Coolant
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R

T 0

T s

T CoT Ci
T coolant
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•

 

Temp drop through the gap
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Impact of Fuel Thermal Conductivity

 0.00  1.00  2.00  3.00  4.00  5.00  6.00  7.00  8.00
   200

   300

   400

   500

   600

   700

   800

   900

AVERAGE BURNUP (MWd/tU)
x104

MA
X 

FU
E
L 
TE

M
PE

RA
TU

R
E 
(
C)

NFIR Model
Modified MATPRO Model

Halden TC Data



25© 2010 Electric Power Research Institute, Inc. All rights reserved.

Pellet-Cladding Gap

Open Gap Condition Closed Gap Condition
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Fuel Rod Deformations

•

 

Fuel and cladding thermal expansion

•

 

Pellet solid swelling, densification, and relocation

•

 

Pellet cracking, creep, plasticity, and hot-pressing

•

 

Cladding irradiation and thermal creep

•

 

Cladding elongation by irradiation growth 

•

 

Cladding elastic and plastic deformations (PCMI, ballooning, etc.)
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Stress-Strain Relations

•
 

Incremental Stress-Strain Equation

vectorstressInternalR

incrementStrain

matrixveconstitutiMaterialH

incrementStress

RH

−

−Δ

−

−Δ

−Δ=Δ

≈

≈

~

~

~

~~~

ε

σ

εσ

~
1

~~ σσσ Δ+= −ii
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Stress-Strain Relations: Axi-symmetric 
Simplification

•
 

General elastic theory is applied in fuel and cladding with 
certain simplifying assumptions:
–

 
Axisymmetric

 
system in r-z

 
analyses

–
 

Fuel and clad axial movements are allowed at different 
rates but planes perpendicular to z-direction remain so 
during deformation

–
 

Time dependent phenomena (e.g., creep and swelling) 
are treated as series of quasi steady-state

–
 

Clad ID is subject to 
•

 
internal pressure (initial + FGR) in open gap

•
 

Hydrostatic PCMI in closed gap
–

 
Clad OD is subject to coolant pressure
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[ ] TcrplrzEtot Δ++++−= αεεσσνσε θθθθ ,,
1

, )(

[ ] TcrzplzrzEtotz Δ++++−= αεεσσνσε θ ,,
1

, )(

• Constitutive relations
 

(elastic + plastic + creep + thermal):

[ ] TcrrplrzrEtotr Δ++++−= αεεσσνσε θ ,,
1

, )(

–
 

Reversible: Elastic and thermal
–

 
Irreversible: Plastic and creep

Stress-strain constitutive equations (2)
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gas pressure pgas

θ

θ

σσ

δσ

2
1                                

;/)(    tubes,wall- thin•
:

=

−=

z

CCgas Rpp
gapOpen

-
 

fission-gas and system pressure

Compare with Analytic Solution: Open Gap
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∑
∑=

ii

i
gas T/V

nR
p i = void region in fuel element

- plenum

- gap

- cracks

R = gas constant

ni

 

= moles gas in region i

Vi

 

= volume of region i

Ti

 

= temperature of gas in region i

Open gap ID pressure (Fill gas + FGR)
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•

 

forces acting on the cladding arise from:

-

 

fuel swelling (closed gap, or hard PCMI) 

θ

θ

σσ
δσ

=
−=

z

CCi Rpp /)(

Compare with Analytic Solution: Closed Gap
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Material Properties and Behavioral Models
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Key thermal and mechanical properties and 
behavior models
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UO2 Material/Behavior Models

Model Source Primary Dependency 
Thermal Properties 

Specific Heat and Enthalpy MATPRO T, O/M ratio 
UO2 Thermal Conductivity MATPRO/ESCORE 

NFIR/Turnbull 
User Defined 

T, burnup, porosity, Gd enrichment 

Emissivity MATPRO T 
Melting Temperature MATPRO 

Literature 
Burnup 

Mechanical Properties 
Thermal Expansion MATPRO T, PuO2 fraction, molten fraction 
Solid Swelling MATPRO T, burnup 
Densification MATPRO or 

ESCORE 
T, burnup, Initial density, resintering 
temperature 

Relocation ESCORE or User 
Input 

Burnup, power level 

Pellet Cracking Smeared Crack T, E, εο, εf, σy  
Elastic Modulus and Poisson's Ratio MATPRO T, ρ, O/M ratio, burnup, PuO2 fraction 
Thermal/Irradiation Creep MATPRO T, t, grain size, ρ, fission rate, O/M ratio, stress
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UO2 Material/Behavior Models (cont’d)

Behavioral Models 
Model Source Primary Dependency 

Steady State Fission Gas Release ANS5.4 
Forsberg-Massih 
ESCORE 
User Defined 

T, burnup, grain size, resolution parameter 

Transient Fission Gas Release EPRI-CE T 
Radial Power Distribution TUBRNP 

RADAR-G 
User Defined 

T, φ, fission rate, Pu species fractions, burnup, 
U enrichment, and Gd enrichment 

High Burnup Rim Structure TUI/Lassmann Local Burnup 
 User Defined -

 

User defined subroutine available and/or Input data options can

 

be used to over-ride internal model
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Zircaloy Material/Behavior Models

Model Source Primary Dependency 
Thermal Properties 

Specific Heat MATPRO T 
Thermal Conductivity MATPRO, NFIR T, Φ, Gd 
ZrO2 Thermal Conductivity MATPRO and PFCC  T 
Emissivity MATPRO T, oxide layer thickness 

Mechanical Properties 
Thermal Expansion MATPRO T 
Elastic Modulus and Poisson’s Ratio MATPRO T, O2, Φ, cold work 
Zr Plastic Deformation MATPRO modified εp, έ, T, cold work, Φ, O2 
Annealing MATPRO T, ~ΔT, Δt, Φ, cold work, φ 
Zr Mechanical Limits MATPRO/NFIR  T, cold work, Φ, O2, έ 
Failure PCI/SCC, Transient 

Rupture, SED 
T, t, σ, εburst 

Thermal and Irradiation Creep MATPRO 
ESCORE 
Limbäck-Andersson 
User Defined 

T, σ, φ, Φ, έ 

Irradiation Growth MATPRO 
ESCORE 
Franklin 
User Defined 

Φ, cladding type or cold work 

Meyer Hardness MATPRO T 
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Zircaloy Material/Behavior Models (cont’d)

User Defined -

 

User defined subroutine available and/or input data options can

 

be used to over-ride internal model

Behavioral Models 
Model Source Primary Dependency 

Low Temperature Oxidation 
(BWR and PWR corrosion during 
normal operation) 

MATPRO 
PFCC-EPRI/SLI 
User Defined 

T, Sn content, SPP distribution, 
Li content 

High Temperature Oxidation 
(LOCA temperature regime) 

Cathcart 
Baker-Just 
Leistekov 
Urbanic 
User Defined 

T 
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radiation 
densification

Solid fp

 

swelling

Burnup, MWd/kgU

Pellet Densification

•
 

Densification is the removal of as-manufactured porosity 
during irradiation in the reactor
–

 
Function of pellet manufacturing process, temperature 
and burnup

–
 

Results in decrease in pellet dimensions
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UO2 Swelling

 

Local Burnup (GWd/MTU)
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Measured Data
FALCON 

Data from S. Bremier, C.T. Walker, and R. Manzel, OECD/AEN/NEA Seminar on Fission 
Gas Behavior in Water Reactor Fuels, September 2000.
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Gap Behavior Models

Model Source Model Dependency

Thermal Properties

Gas Thermal 
Conductivity

MATPRO T, P, gas species fractions

Temperature Jump Dist. Kennard T, P, gas species fractions

Gap Conductance Ross-Stoute/Mikic-Todreas
User Defined

T, surface roughness, gap thickness, 
emissivity, P, Meyer Hardness

Mechanical Properties

Friction Coefficient User Input N/A
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PCI/PCMI, including CDI (Cladding Damage 
Index)
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Gap Closure and PCMI

•
 

Open gap
 

-
 

hot but intact 
pellet

•
 

Initial cracking & relocation
–

 
a fraction ~ 0.5 of initial 
hot gap is converted to 
void volume inside cracks

•
 

Soft PCMI –
 

fuel first 
contacts cladding –

 
no 

interfacial pressure
•

 
Hard PCMI

 
– void volume 

eliminated from fuel –
 

high 
interfacial pressure
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- cracks predominantly radial –
do not interfere with heat conduction

“hard” PCMI

“Soft” 
PCMI 
starts

Hour-glassing of 
cracked pellet

1

2

3

PCMI = pellet-cladding mechanical interaction
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Cladding Failure Models

•
 

Three separate failure regimes are considered
–

 
Pellet-Cladding Interaction (PCI) failure by 
Intergranular

 
Stress Corrosion Cracking (ISCC)

–
 

High temperature rupture (ballooning and burst)
–

 
Mechanical fracture due to PCMI

•
 

Two different approaches are used to calculate the 
cladding failure potential
–

 
Cumulative damage concept is used for PCI and high 
temperature rupture

–
 

Critical limit state based on the cladding strain energy 
density is used for mechanical fracture
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PCI/SCC — Mechanism 

During service:
•

 

Complex fuel cracking and 
relocation

•

 

High local clad stresses, even at 
low LHGR

•

 

Embrittling

 

fission product may 
initiate ISCC

The crack may become through
wall:
•

 

Statistical nature of the 
mechanism

•

 

Deterministic modeling is useful
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FALCON PCI Modeling

Standard r-θ

 

model

Fuel Pellet
Crack

Cladding
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PCI — Failure Model In FALCON

•

 

Cumulative Damage Index (CDI)
–

 

Assumes the material undergoes cumulative damage due to a 
sustained stress
•

 

Higher the stress, the shorter the time to failure
–

 

For an applied stress of σo

 

lasting for a time Δt

where tf

 

(σ0

 

) is the time to failure had the stress, σ0

 

, been 
applied for the total time

Δ D and D are incremental and total cumulative damage, D 
is given by

( )0ft
tD

σ
Δ

=Δ i
n

1i
DD Δ= ∑

=
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SCC Cumulative Damage Index (CDI)

•

 

Assumes the material undergoes cumulative damage due to a 
sustained stress
–

 

Higher the stress, the shorter the time to failure

•

 

For an applied stress of σo

 

lasting for a time Δt

where tf

 

(σ0

 

) is the time to failure had the stress, σ0

 

, been 
applied for the total time

•

 

Total cumulative damage, D, is then given by

( )0ft
tD

σ
Δ

=Δ

i

n

i
DD Δ= ∑

=1
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CDI Application

•

 

The CDI has been validated against ramp test experimental data 

–

 

Adapts the theory to application
–

 

Accounts for differences between fuel rod environment and out-of-

 pile SCC test data

•

 

Validation parameter, β, is applied as follows

•

 

Provides a framework for rod failure determination via the SCC 
mechanism

if

i
n

i t
tD

β
Δ

= ∑
=1
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SCC Time-to-Failure Data

Time to Failure (sec)

1e+2 1e+3 1e+4 1e+5 1e+6
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Stress Relieved Zr-4 at 630 K - failed (Roberts et al.)
Stress Relieved Zr-4 at 630 K - non-failed (Roberts et al.)
Trend defined by Roberts et al.
Iodine Zr-4 at 623 K (Le Boulch)
Iodine Stress Relieved Zr-4 at 623 K  Lot D1 (Brunisholz and Lemaignan)
Iodine Stress Relieved Zr-4 at 623 K  Lot D2 (Brunisholz and Lemaignan)
Iodine Stress Relieved Zr-4 at 623 K  Lot D3 (Brunisholz and Lemaignan)
FALCON Zr-4, 0.2 CW at 630 K
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CDI Validation and Failure Threshold

•
 

PWR failure threshold –
 

β

 
defined 

log CDI
0.1 1 10 100

Fa
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y
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0.2
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0.8

1.0

5% failure 

50% failure

95% failure

Failure Probability
%

CDI

99 71.84

95 58.5

50 5.85

5 0.585

1 0.477
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Fission Gas Release
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open pore

grain edge
channel (tunnel)

intragranular bubbles

intergranular
gas bubbles
(on grain face)

single atoms

1.
 

Production in grain at a rate                  atoms fg/cm3-s

2a.  fg
 

diffuses towards grain boundary; diff. coef. = D

2b. Some fg
 

trapped in intragranular
 

bubbles

3a.  fg
 

atoms arrive at grain boundary (gb)

3b.  fg
 

trapped in intergranular
 

bubbles –
 

N atoms fg
 

/cm2

 

gb

4.   Bubble interlinkage on gb
 

leads to release to rod interior

FYfg
&=β

Fission Gas Production/Basics
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•
 

the fuel stack is divided into J x K isothermal cylindrical 
annuli (sections) of length Δz

 
and radial thickness Δr

• Δvj,k

 

= volume of section j,k
 

= 2πrΔrΔz

tv︶z︵FYN k,jjfg
1

Avog
×Δω− &

FRE'q:LHR  from obtain - 

j at rate fission average-axial F
2

fissFA
&

&

π=

=

ω(zj

 

) = axial power-shape function;  Efiss

 

=3.2x10-11

 

J/fiss
• mj

 

,k
 

= cumulative moles of fg
 

released from sect. j,k

k,jn

∑ ∑∑ ∑
= == =

÷=

J

1j

k,j

K

1k

J

1j

k,j

K

1k

rod nmf

= moles fg
 

produced in time t 
in section j,k

 
=

Fission Gas Release/Basics
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Intragranular

 

diffusion

a0
r
CD

t
C 2

2 ≤η≤β+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
η∂

∂
η

=
∂
∂

C = fg
 

concentration in matrix of fuel, atoms/cm3

D = fission-gas diffusivity in fuel, cm2/s

a = radius of equivalent spherical grain ~ 5 μm
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Re-solution from intergranular

 

bubbles

•
 

ff or O,U recoil collision 
with fg

 
in bubble

•
 

If ~300 eV
 

transferred          
to fg

 
atom it is re-solved

•
 

re-solution depth λ~10 nm

•
 

re-solution parameter: 
probability/s of an atom   
being re-solved b ~ 10-5
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Fuel Rods Used in FGR Benchmarking

Case Average 
Burnup 

(GWd/tU) 

Number 
of Rods

Description – Rod Type, Irradiation History

DOE/Br-3 59.6 1  PWR, steady state 

Grand Gulf  39.9 2  BWR, commercial, steady state 
HB Robinson 64.3 2  PWR, commercial, steady state 
HBC 48.2 1  PWR, steady state 
HBEP 45.5 4  PWR & BWR, steady state 
IFA 418 13.6 1  HBWR, steady state 
IFA 432.3 28.9 1  HBWR, steady state 
IFA 519.9 91.2 1  HBWR, steady state 
IFA 533.2 51.5 1  HBWR, steady state 
IFA 597 61.1 1  BWR, steady state, base irradiation only 
KKL 27.3 2  BWR, commercial, steady state 
Limerick 55.3 2  BWR, commercial, steady state 
Over Ramp 23.8 1  PWR, steady state & ramp 
RISO III 44.0 4  PWR/BWR, steady state & ramp 
Super Ramp 45.2 1  PWR, steady state & ramp 
Tribulation 56.5 4  PWR, steady state 
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Fission Gas Release
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Assessment of Fission Gas Release 
Predictions – Validation Set

Mean error of estimate = -

 

1.3%  

Burnup (GWd/tU)

10 20 30 40 50 60 70

Fi
ss

io
n 

G
as

 R
el

ea
se

 (C
al

cu
la

te
d 

- M
ea

su
re

d)
 (%

)

-40

-20

0

20

40

Fission Gas Release Differential (%)

< -20  -20  -15   -10   -5   5  10  15  20 > 20
N

um
be

r o
f D

at
a 

Pa
irs

0

10

20

30

40

50

60

70



61© 2010 Electric Power Research Institute, Inc. All rights reserved.

Redesigning a Legacy Fuel Performance Code
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Redesigned FALCON Use Structure
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FALCON Redesign Objectives

Accommodate Change!
–

 
Usability

–
 

Maintainability
–

 
Reliability

–
 

Extensibility

Use a Clear Workscope Delineation
1.

 
Software Development

2.
 

Fuel Physics Modeling
3.

 
Customer Support

Don’t Change the Answers!
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FALCON Redesign Specifications

•
 

Develop a GUI “front-end”
•

 
Changes additions must be user-friendly

•
 

Develop a post-processor
•

 
Ability to query output anywhere in the mesh

•
 

Output need not be specified in the input 
•

 
Modernized core FORTRAN solver

•
 

Support parallel runs and command line interface (non-
 GUI)

•
 

Make it cross-platform (Windows, Linux, Mac OS X) and 32 
and 64-bit compatible

•
 

Support all user types and levels
•

 
Beginner to Advance

•
 

Universities to Commercial Licensee 
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FALCON 1.0  Input Features

•
 

Input organization and field names chosen for clarity
•

 
Embedded descriptions of every input in the GUI

•
 

On-the-fly input validation: info, warnings, and errors
•

 
Histories/functions

•
 

Advanced plotting: overlay, slicing, zoom/pan, …
•

 
Advanced table editing: copy, paste, scale, …

•
 

Optionally loaded from text files
•

 
“Schemas”

 
to reduce/tailor inputs in a certain class of 

analyses
•

 
“Levels”

 
can hide rarely used fields

•
 

Button to fill in full mesh from “automatic”
 

mesh specs
•

 
“Dry run”

 
for deep input check & view mesh
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FALCON 1.0 (Pre-Processor)
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Modern Redesign Process

•
 

Tools: Python, Fortran 95, Qt, HDF, Mercurial, …
–

 
The right tool/language for each task

–
 

Standard packages: Don’t reinvent the wheel
•

 
Process: Agile development, test-driven, object-

 oriented design
•

 
Collaborative development support system (Trac)
–

 
Establish Collaborative R&D between “Software”

 
and 

“Analytical”
 

experts
–

 
Continually factor in feedback from users/licensees
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FALCON Trac Server (wiki and issue tracking system)
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Phased and Agile Development Approach

•
 

Modernize and restructure the FALCON code
–

 

FORTRAN no longer the best language for the user-side application
–

 

Initially keep the inner finite element solver in FORTRAN but clean 
FORTRAN 77 to FORTRAN 95

–

 

Remove hard-wired behavioral models that may be proprietary
•

 
Keep the existing pedigree of V&V already completed 

•
 

Design for ongoing evolution of FALCON capabilities
•

 
Provide user-extensions can be plugged in as dynamic link 
libraries
–

 
Data proprietary to user’s fuel vendor
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Redesigned Structure
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FALCON 1.0 Post-Processor
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FALCON Usage

•
 

Research (5)
–

 
EPRI, PSI (Swiss), GISC (Japan), and EDF DRD 
(France)

•
 

Utility Members (8)
–

 
Exelon, TVA, Xcel, Progress Energy, Duke, 
KHNP (Korea), ETN (Brazil), and Iberdrola

 
(Spain)

•
 

Vendors (2)
–

 
KNF (Korea) and MHI (Japan)
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User Group Interactions and Benefits

•
 

Advice on installation and use of the code
•

 
Troubleshooting (via phone and emails)

•
 

Trouble reporting by all users and remedial actions
•

 
Access to Interim code updates (before formal 
release of the next MOD):

•
 

Code enhancement of generic interest
•

 
Annual UG meetings and experience exchange
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