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— Light Water Reactors, fast reactors)
— Pressing for higher performance and improved fuel reliability

* Key challenges for fuel cladding

* Microstructure of irradiated Zr alloys

* Microstructure of irradiated stainless steels
* Microstructure of irradiated ferritic steels

- Brief comments on SiC composites



Materials performance 1s key for economic and safe
fission reactor operation in current LWRSs

Heat generation in UO,-based fuel pellets

Heat transfer across Zr alloy cladding

Numerous core internal structures to securely position core
Reactor pressure vessel for containment of fission products

Piping and steam generator equipment for heat conversion to
electricity
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Overview of Swelling/Fission Gas Release Issues

 Fission Products

— Two atoms replace every U (or Pu) atom that
fissions

&)
— 25% of fission products are gas atoms (Kr, Xe) e
* Fuel Swelling
— Fuel swells due to generation of fission products ~
2Ky ‘ Q‘“Ba

— (as atoms coalesce into bubbles, accelerating
swelling

— Fuel swelling tends to reduce or close gap o
* Fission Gas Release ‘
— Some fission gas escapes fuel

— Pressurizes plenum and decreases thermal
conductivity

— Percent of gas escaping fuel
¢ <10% in LWR fuel
* > 50% in fast reactor fuel

Todd Allen




Light Water Reactor Average Fuel Cycle Lengths have
increased by ~30 to 40% since 1990
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Figure 1. Increasing average cycle lengths for fuel elements in PWRs and BWRs in the USA.
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Light Water Reactor Average Fuel Discharge Burnup has
doubled since 1970

Corresponding typical dose to LWR fuel cladding has increased from ~10 dpa to >20 dpa
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What is changing with Burnup ?
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Fuel Operational Challenges: Increased fuel duty cycle

- Total residence time (burnup) has increased (from 3 (30GWd/t) to ~ 5
years) => higher radiation damage and longer exposure => more
corrosion

* The NRC Burnup limit is 62 GWd/t, some utilities have expressed
interest in increasing this to 75 or 100 GWd/t => decrease waste and
increase availability factor.

* Primary water chemistry is different (presence of Li, Zn injection, CRUD
formation, hydrogen water chemistry )

* Fuel is operating at higher temperatures (power uprates)

* Fuel cycles have been increased (18 or 24 month cycles)

=> Utilities and fuel vendors would like to have the flexibility of increasing
burnup further, while operating economically and safely



Fuel failure rates in Light Water Reactors have decreased
dramatically since 1980
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Fuel failures continue to be an issue, although greatly
reduced compared to 1980s
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The goal of US reactor utilities was zero failures by 2010

Even while higher fuel burnups are being

achieved, the industry wanted to completely

eliminate fuel failures by 2010 (cladding
failures cause increased exposure to
workers in outages, may force unplanned
shutdowns).

This involves thousands of fuel assemblies
and millions of fuel rods and none can fail.
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Grid-rod fretting 1s a major Zr alloy cladding 1ssue
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Visual appearance of cladding frettmg at the
places of contact with spacer grids.

Freitng Marks Rod

Typical marks of contact interaction of VVER
fuel rods with spacer.
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Pellet-clad Interaction (PCI)

Pellet chip

FIG. 5.8 PCI fatlure due 10 a wedge shaped peller chip lodging between pellet and cladding
[530]

IAEA Technical Report #388
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Overview of fission reactor options

* Light Water Reactors (LWRs): pressurized- and boiling-water designs
— Present fleet of nuclear power plants (UO, fuel, zircaloy cladding)
— Pressing for higher performance and improved fuel reliability

* “Gen-IV” High Temperature Gas-Cooled Reactors
— High temperature process heat applications as well as electricity production
— Selected for Next Generation Nuclear Plant (NGNP)

 “Gen-IV” Na-cooled Fast Reactors
— Close the nuclear fuel cycle by “burning” transuranic isotopes and fission
product wastes from LWR plants
* Other “Gen-IV” reactor concepts
— Supercritical water reactor
— Molten salt reactor
— Pb-cooled fast reactor
— Gas-cooled fast reactor

15



Comparison of Gen IV and Fusion Structural Materials
Environments
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Overview of desired cladding attributes

* Very low parasitic neutron absorption
— (dependent on spectrum; Zr is very good for LWRs)

* Good mechanical strength
— Normal and transient high temperature conditions

» Good compatibility with coolant and fuel (including fission products)
— (water for most current nuclear reactors)
— Normal and transient/accident conditions

* Good thermal conductivity

 Good radiation resistance
— (lifetime dose of ~20 dpa for zircaloy after 40-50 MWd/kgHM)

* High melting temperature
— Provides additional safety margin for accident conditions

* |sotropic properties

17



Comparison ot properties ot candidate cladding

hase materials

Mg Al Be Zr Fe Cr Ni \' Mo SiC
Thermal neutron | 0.063 | 0.23 | 0.009 | 0.185| 2.5 3.1 45 | 5.08 | 2.6 |0.087
absorption cross
section (barns)
Thermal 156 | 237 | 201 22 80 94 91 31 138 | 30*
conductivity
(W/m-K)
0.5 T, (°C) 183 | 194 | 502 | 790 | 630 | 792 | 590 | 808 | 1170 | 1278
Crystal structure hcp fcc hcp hcp bcc bcc fcc bcc bcc fcc

*value for commercial purity SiC; high purity SiC has K;,~350 W/m-K
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Fuel Assembly Performance

* Design Functions

— Provide support and protection for the fuel-pin bundle and
other components of the subassembly

— Provide a controlled path for the primary coolant

— Provide a compact structural unit that can be easily moved in
and out of the core by a refueling machine

— Interact with adjacent subassemblies, retaining ring, and core
support plates in a manner that assures safe and predictable
reactor geometry

* Design Issues
— Swelling, creep, fatigue, toughness
— Reduced limits for weldments

19 Todd Allen/Jeremy Busby



Cladding Performance Issues

» Survival of cladding must be predictable

— Wastage-
* Corrosion by the coolant
* Fuel cladding chemical interaction (FCCI)

— Strain
* Fission gas pressurization
* Swelling and associated creep of constrained components
* Fuel cladding mechanical interaction (FCMI)

— Microstructural stability during unplanned transients

* Loss of coolant accident (LOCA), reactivity insertion accident (RIA)

20 Todd Allen/Jeremy Busby



Zry-2 and Zry-4 are the standard LWR cladding materials

» Zirconium alloys are commonly used as material for cladding tubes in LWR because
of their inherent resistance to a wide variety of environmental conditions and their
neutron transparency

» The most used alloys are Zircaloy 2 in BWR and Zircaloy 4 in PWR

Sn (%) Fe (%) Cr (%) Ni (%) 0 (%) Structure
Zircaloy 2 12-15 0.07-0.2 005-015 | 003-008 | 009-0.16 RXA
Lircaloy 4 1.2-1.5 0.18-0.24 | 0.07-0.13 - 0.09-0.16 CWSR
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Zry-2 has been optimized for BWR performance via liners

» In order to mitigate the risk of failure during power transients in BWR, the fuel
vendors have developed a barrier cladding by co-extrusion of Zircaloy 2 bulk with an
alloyed inner liner

Zircaloy 2

Liner

2 Todd Allen/Jeremy Busby




“Triclad” architecture of Zircaloy tube
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Zry-4 1s being replaced with modern cladding alloys

» According to the evolution of PWR operating conditions (load follow, high burn up),
the fuel vendors have developed new Zr alloys with improved performances

* Nb based binary and quaternary alloys

Sn (%) Nb (%) Fe (%) 0O (%) Structure
M35 - 1 0.015-0.037]0.118 — 0.148 RXA
Zirlo 0.8-1.1 0.8—1.2 0.09-0.13 ]0.105-0.145] CWSR
Opt.Zirlo 0.6 0.8 0.8 1.2 0.09 - 0.13 |0.105 - 0.145 PRXA

24
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General overview of main radiation damage regimes
TEMPERATURE DEPENDENCE OF COPPER IRRADIATION MICROSTRUCTURE
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Overview of Defect Microstructures in

Irradiated Materials

: . : Grain boundary
Voids, precipitates, solute segregation helium cavities

Dislocation loops

Irradiation Temperature (T/T,,) J2 QAR




Radiation Damage can Produce Large Changes in Structural Materlals
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* Phase instabilities from radiation-induced
precipitation (0.3-0.6 T,;, >10 dpa)

* Irradiation growth and creep (<0.45 T,,, >10 dpa)

*  Volumetric swelling from void formation (0.3-0.6
Ty, >10 dpa)

* High temperature He embrittlement (>0.5T,,,
>10 dpa)

27 ) - 3
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tructure of Zircaloy-4 after 0.1 dpa at 350°C
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K. Farrell et al., ORNL/TM-2003/63 (2003)
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<a> type dislocation microstructure in neutron irradiated
zircaloy-4 at 425°C

Micrographs illustrating the evolution of (a) type dislocation microstructure during irradiation in EBR-II at 700 K: (a)
1.1X10% n m~%; (b) 1.5%10% n m ™2 Diffracting vector g = 1011 and beam direction B = [0111] in each case.

2 M. Griffiths, J. Nucl. Mater. 159 (1988) 190



Dislocation loops form in Zr-alloys in similar sizes and
densities as other irradiated metals such as stainless steel

Figure 5 ~ Bright-field trar

. . . Table 1 Effect of proton irradiation on loop density and average diameter
evolution of dislocation lo¢ P £ " 2

As received 2 dpa Sdpa 7 dpa
Average 7 11 11
diameter (nm)
Density 0 7 8 15
(10" m")

30
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Irradiation damage influences Zr-alloys 1n the same
manner as steels

» Irradiation damage has a significant effect on burst and tensile properties by

% inducing hardening (For CWSR material, the initial high dislocation loop
density attenuates the irradiation effect)

K7

% reducing the ductility
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Growth 1n Zr-based alloys 1s likely due to partitioning of
dislocation loops

» Dimensional changes of the cladding at constant volume in the absence of stress
application

+ Expansion along the <a> axis of the hexagonal crystallite concomitant with
contraction along <c> axis
% According to texture, irradiation growth evinces axial length increasing

0.4
W, 550 K
03 it
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Fuel assembly bowing

MFuel rod bow — due to interaction with top and

bottom nozzles

BAssembly bow from variation in growth of
Zircaloy as a function of flux gradients.

B Consequences: difficulties in positioning fuel 3
during loading and unloading operations, and

insertion of control rods.
4

/

5 CET1(
1 bt R
s e
- r-
T 5 u
5?2 /n /X
: / ;}VI’
ot i
G
1 T 7
>
W/ﬂ
0 I N I I
0 2 4 6
NEUTRON FLUENCE , E-22*cmr

» lotju Totev

E TR/aAr I IFY
‘ e 2
1 :

ot LY
A1 L St
ki '

|

D.G. Franklin & R.B. Adamson, 1988



Zx(Fe,Cr), precipitates in unirradiated Zircaloy-4

34 W.J.S. Yang, J. Nucl. Mater. 159 (1988) 71
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Precipitate amorphization has been observed in LWR
cladding

Figure 7 — conventional bright-field (left) and high-resolution (right) image of a
Zr(CrFe): precipitate after irradiation to 5 dpa at 310 °C. The amorphous structure was
confirmedfor the bright-field image based on absence of diffraction contrast upon
changing sample orientation.

35 Todd Allen/Jeremy Busby




Amorphization of Zr(Fe,Cr) particles can influence a
number of cladding properties

* Breakdown of particles can influence mechanical
performance

 Breakdown of particles may influence oxide
formation

* Release of Cr and Fe to matrix or oxide may
influence growth and stability of oxide layers.

36 Todd Allen/Jeremy Busby



Overview of Aqueous Corrosion of Zr alloys

-BWR
Nodular corrosion

*Unfavorable water chemistry

*Crud induced localized corrosion (CILC) |
‘PWR Nodular corrosion

*Higher temperature than BWR so uniform corrosion more of an issue
«Uniform corrosion-increases at high burnup

*Decrease in thermal conductivity and associated increase in
temperature

«Zirconium hydrides form brittle region

¥ Todd Allen % RibcE



General corrosion 1s the dominant form of
degradation

» In primary environment (water or steam), Zr alloy cladding undergoes corrosion
according to following chemical reaction

Zr + 2H,0 - ZrO, + 2(1 - w)H,(coolant) + 4w H(metal)

w : fraction of reaction produced hydrogen absorbed by the metal
» Progressive formation of a ZrO, layer
» Hydriding of the cladding metal bulk

Oxide thicknass Enhanced Spacer Shadow
Corrosion

Barrier Layer
Natanaratian doa tn

BWR: SPP
BWH Shadow Corresion dssolution/hydriding
- PWR: hydriding

SWHPWH

BWR Nodular Gor Unform Camosan

i

. e

§H arEE Time o’
- i W el
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Optical microstructure of irradiated Zircaloy-4 cladding

1y ¢

‘ . N . ot ATEREP
\ R ﬁ ¥
K : a .A‘L|‘ A
’ ¢ Y .
§ Fots:
Y s
Y

.

Aoty . . *Ongd
A ¥ N R Rt
oA "“ b Mg N

oy A ‘- T b4
9 GWd/t: »

% oA Bl P 1
JIEN W .
LA A A3

AT
. : 1 i
. - '
¢ b 18 . "
3 . A 4 " L )
2 ¢ 4 L >
» + 0 4-. N . “
A v ,
.
o )
b AV A .
Y (L \ v ”
> Vil L 4 -
i i ‘.

(a)

Inner

a p

67 GWd/t

Inner surface outer surface

R.S. Daum (ANL) |

T =

39

JJJ Tl



Hydrides form platelets within the metal matrix

» Zr hydrides are normally distributed over the whole cladding thickness, precipitating under the form
of platelets, preferentially aligned along the hoop direction according to texture
<+ PWR (High Burn up)

* CWSR Zy4 (ZrO, > 50 um), a hydride rim of about 30 um to 60 um is observed
close to the colder outer surface of cladding

* MS cladding (ZrO, = 20 um), according to low hydrogen pick-up, no hydride rim
is observed

<+ BWR

» Barrier Zy2 cladding (ZrO, =~ 20 um), most of the hydrides tend to precipitate in
the liner

PWR - CWSR Zy4 - ZrO, > 50 um PWR - RXA M5 - ZrO2 ~ 20 um BWR - Zy2 with liner - ZrO, ~ 20 um

40

Todd Allen/Jeremy Busby



Hydride failures may be long-term or delayed

» Fracture proceeds by Delayed Hydride Cracking (DHC)
mechanism

+» Phenomenon might be activated under decreasing
temperature, for instance during Dry Storage

% The pre-existence of a crack is required (For instM

initiation in hydride rim under reactor operation)

%+ Propagation of the crack is assisted by hydrogen e
diffusion and hydride precipitation at the crack tip )

sans
fadst
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Stress (magnitude and direction) can influence existing
hydrides

» Hydride reorientation (HRO) from hoop to radial direction may occur when the cladding
is cooled down under the tensile hoop stress generated by the internal pressure of the
fuel rod

» The precipitation of radial hydrides is observed whether the cladding hoop stress
exceeds some critical value

» The radial hydrides have a deleterious impact on the mechanical properties of the
cladding i.e Ductility drop

» HRO phenomenon is a key issue with respect to the Spent Nuclear Fuel (SNF) integrity
during dry transportation and storage

» Todd Allen/Jeremy Busby Source: B. /éﬁe‘n/g/



Role of Stress on Hydride formation in Zircaloy cladding

Low Hoop Stress ——————) High Hoop Stress

Circumferential

N s i Mixed Hydrides Radial Hydrides
Y . in Irradiated Zircaloy in Irradiated
Vi Elgl Claddin Zircaloy Claddin
Cladding 9 y 9

s J. Voglewede, NRC (PIE workshop, March 2011) R



Role of Stress on Hydride formation in Zircaloy cladding

Tensile stress affects hydride
formation on the inner diameter
of the cladding;

Typical hydride habit planes are
{1010} in pure Zr and {1017} in
zircaloys, epitaxial with the
matrix: (111),,4//(0001),,

44 C. Lemaignan, A.T. Motta, Nuclear Materials, vol. 10B (Wiley-VCH, 1994) p.1
(from C.E. Coleman, AECL)
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Defect clusters 1n Type 304L stainless steel following
neutron 1rradiation near 120°C

e o0

0.065 dpa - 0.52 dpa |
46 S.J. Zinkle, R.L. Sindelar, J. Nucl. Mater. 155-157(1988) 1196 LAY
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Evolution of defect cluster size in irradiated stainless steel
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Effect of 1rradiation te

mperature on loop microstructure

330°C
25% CW PCA, ORR (speciral-taifored), 7.4 dpa, WBDF (g, . 9/3g)

P.J. Maziasz, J. Nucl. Mater. 191-194 (1992) 701
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Temperature dependence of loop microstructure in
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Temperature dependence of faulted loop density in
neutron 1rradiated 316 stainless steel
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Dislocation loop density due to neutron irradiation 1n
solution annealed 316 stainless steel
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Total dislocation density in neutron irradiated austenitic

stainless steel T T T T T T T
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Eftect of dose on the total
dislocation sink strength
of neutron 1rradiated Type
316 stainless steel
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Deformation mechanisms in FCC metals
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CAVITY DENSITY (m™3)
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Rad1at10n 1nduced swelling 1n stainless steel
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Void formation in 1on-irradiated austenitic stainless steel (625°C, 70 dpa)

Packan & Farrell (1982) 7
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Swelling of

Stainless Steel:
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CAVITY VOLUME SWELLING (%)
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Summary of precipitation in irradiated stainless steel
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Precipitate formation 1n 1rradiated stainless steel
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Figure 13
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Tihange baffle bolt: 304+51 proton-irradiated to 5.5
neutron-irradiated to ~7 dpa at dpa at 360°C.
299°C*.

Kenik & Busby, Mat.
Sci. Eng. A, submitted
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Room Temperature Radiation Hardening in 9Cr FM Steels
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figure 86 Yield stress hardening at 60-80 °C (est.) and 300 °C irradiation temperatures at RT
test temperature. NRG data from current report and previous NRG report [4]. HFIR

data from [26]
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Deformation microstructures in neutron-irradiated
Fe-8Cr-2WVTa ferritic/martensitic steel (F82H)

F82H base metal
(@) oo waa wsTaK
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Fig. | Stress-strain curves of FS2H BM () and TIG (b) exhibit dislocation channeling after deformation
irradiated at 573K and 773K in tests at RT

.
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Effect of Neutron Irradiation on the Ductile to Brittle

Transition Temperature in Ferritic/martensitic Steels
300 after Boutard et al., C.R. Physiqlue. 9 (2008) 287 and Klueh & Harries (2001)
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Effect of Cr Content on the Ductile-Brittle Transition
Temperature of Irradiated Ferritic/martensitic Steels
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New 12YWT Nanocomposited Ferritic Steel has Superior
Strength compared to conventional ODS steels

1200 —w=—
i T — Yield strength
1000 [ RN -
12YWTN\ ,
- QDS (SUMITOMO \
< 800 [ N
o i MA956 .\
S soo [ gt \
§ 600 ? ";—;——\——\———————:‘:“:-:h_—‘_‘\ \
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- ODS(AL0,) !
200 - . ~
0 [ 1 1 | 1 1 1 | L ! L |
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Temperature K

* Thermal creep time to failure is increased by

several orders of magnitude at 800°C compared to

ferritic/martensitic steels

—2% deformation after ~2 years at 800°C, 140MPa

* Potential for increasing the upper operating
temperature of iron based alloys by ~200°C

* Acceptable fracture toughness near room

temperature
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* Atom Probe reveals nanoscale clusters to be
source of superior strength
— Enriched in O(24 at%), Ti(20%), Y (9%)
— Size:ry = 2008 nm
— Number Density : n, = 1.4 x 10%4/m3

* Original Y,0, particles convert to thermally stable
nanoscale (Ti,Y,Cr,0) particles during processing

* Nanoclusters not present in ODS Fe-13Cr +
0.25Y,0; alloy

D.T. Hoelzer, M.K. Miller, et al.



General microstructure of ODS ferritic steel (12YWT)




Microstructure of ODS ferritic steel (12YWT) after neutron
irradiation at 300C to 9 dpa




Nanostructuring Achieves Good Fracture Toughness
and High-Strength Properties

NFA 14YWT Developed at ORNL Grai*n bound?ry nuclfation of NC

M Jump Ratio

&3

Y | Ti | (o) : .C 19nm
* Nano-size grain size with very high grain boundary interfacial area
* High number density of NC in-matrix with A = 10-15 nm
« High number density of NC decorating grain boundaries

" D.T. Hoelzer, ICFRM-13
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Fracture Toughness [MP&in

High Fracture Toughness Achieved in 14YW'T

« The fracture toughness of 14YWT is H?::_- . ﬁx%jﬂ
much better than that of 12YWT -1 s IYWTK,, )

- The DBTT is shifted from ~75 °C for %125_' . * WIS
12YWT to -150 °C for 14YWT - AN

200- - g 1] 8 4

175—- : ® % 50—: . EA A
150 'i = 1 :

125 . . "0 0 0 10 20 30 %0 s 6o
100 . o 14YWT [K,,, | (unirradiated femperet]

751 R ’ ﬂﬁj ((L;““:j;?;‘) « Neutron irradiation to 1.5 dpa at
504 . 4YWT[I§:3T)] (T;; 050 300°C appears to slightly improve
’s ] the fracture toughness above -150°C

2250 -200 150 -100 =50 0 50 100 150 200 250 300 L ,
Temperature [C] » More testing is required though...

* L-T Orientation

* Pre-cracked: crack length to width (a/w) ratio of 0.5

* Tested using the unloading compliance method (ASTM 1820-06)

* K, for brittle cleavage calculated from critical J-integral at fracture, adjusted to 1-T reference specimen K,
» K, for ductile deformation behavior calculated from critical J-integral at onset of stable crack growth

D.T. Hoelzer, ICFRM-13



Proof of Concept: Results of In-situ Neutron + He
Implantation of NFA MA957

» Simultaneous neutron and He implantation
* HFIR: 9 dpa and up to 380 ppm He at 500°C

BNi + ng—> PNi +v
Ni + n, —>°Fe + “He (4.76MeV)

Ny [

BF TEM

specimen substrate

 No visible defect
damage
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Survival of NC and He Trapping in irradiated
I\/I'A\95Z12 n Under Focus

EFTEM Fe M Jump Ratio

« Compared to Eurofer 97, the results
indicate that NC play an important
role in mitigating the accumulation of
point defects as well as trapping He

into small ~1-2 nm bubbles
D.T. Hoelzer, ICFRM-

e et

Eurofer 97
(9Cr steel)




Development of SiC Composites for Nuclear Reactor
Structural Applications: Difficult & High Risk But High Payoff

* SiC Composites Offer * Design composite structures (fiber, fiber-matrix
_ o ] _ interphase and matrix) with improved
— Low radioactivity and afterheat; chemically inert performance
(eases safety and waste disposal concerns)
— High operating temperatures (greater * Develop the required technology base with
thermodynamic efficiency) and low thermal industry and international partners

neutron absorption

* The Feasibility Issues

— Conventional SiC composites are not a hermetic
barrier to fission gases

— Thermal conductivity is reduced by irradiation

— Little is known about mechanical property
response to irradiation

— Technology base for production, joining, design of
large structures is very limited

* Research Approach Silicon carbide composites offer engineered
structures for extreme environments through
tailoring of the fiber, matrix, and interphase

conductivity and strength structures S (AT

— Understand the magnitude and cause of radiation
effects on key properties such as thermal

& S X ZIEEE
E ~RIDGE
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Conclusions

» All cladding options have some shortcomings
— Further materials research is important for improving the current
candidate materials
» /Zr alloys are a reasonable option for light water reactor systems
— Near term alternate: austenitic steels (neutronics penalty)
— Longer term alternate: SiC/SiC composites (fabrication/joining, fission
product containment, and low ductility are some key challenges)

» Design of nanoscale features in structural materials confers
improved mechanical strength and radiation resistance

— Further research on fundamental mechanisms and experimental
validation of performance are needed to develop improved materials for
advanced nuclear energy systems
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