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Summary of NUREG-1801
Generic Aging Lessons Learned (GALL)

® Aging Management Program Elements A Aging
— Scope Definition Management
— Preventive Actions Strategy Input
— Parameters to be Monitored or Inspected >
— Inspection (Detection of Aging Effects) ﬂ'
— Monitoring or Trending 1&E Guidelines
— Acceptance Criteria (Action Levels) <
— Corrective Actions
— Confirmation >Implementation

— Administrative Controls

— Operating Experience Review (Reality Check) 3




The Embrittlement Mechanisms

® [rradiation Embrittlement (Dose & Temperature)
® Thermal Embrittlement (Temperature & Composition)

Changes in material properties
— Strength (increase)
— Ductility (decrease)
— Toughness (decrease)

NDE

Direct inspection not required. Industry trending
used to predict values.

Evaluation | Based on bounding toughness curves.




Irradiated Fracture Toughness
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Materials Included:

Fracture Toughness (MPa*m'?)
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Comparison of Aging/lrradiation Conditions

Application of Fracture Toughness Data to Plant Applications
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Data Needs for Fracture Toughness

® Weld Data*

— Required to determine critical crack sizes for inspection and evaluation of core
shroud welds and core barrel welds

® CASS Data on field exposed materials

— Difficult to simulate long-term synergistic aging/irradiation effects in high flux
experiments

® High Fluence Effects on R-Curve

— Most observations of fracture in high fluence materials indicate ductile fracture
with limited resistance to crack extension

— In large structures credit for crack growth resistance may be helpful
® Low Temperature Fracture Phenomenon

— Multiple observations of low toughness, intergranular failures at room
temperature in highly irradiated materials

— Possible new kind of “ductile-to-brittle” transition?

— Practical implications of this mechanisms unclear (not being considered in
functionality analysis).

f 316 bolting based on fraction of un-cracked




The Dimensional Stability Mechanisms

® Void Swelling (Temperature & Dose)

® [rradiation Enhanced Stress Relaxation/Creep (Dose & Stress)

Component Distortion
Modify Stress/Strain Distribution
— Affects SCC, IASCC and Fatigue

NDE Distortion and its subsequent effects expected to be
observable in visual exam.

Based on detailed FE analysis to observe combined
effects on stress and strain.

Evaluation




Structural Analysis Model
Iterative Simulation of Aging

®FEA — ANSYS (elastic-plastic)

— ANATECH Materials Subroutine
» Calculate Properties at time t
— Irradiated Mechanical Properties

— Creep Rate
— Swelling Rate

lterate

» Update o/ ¢ for At

—



Baffle & Former
Temperatures and Doses Sufficient for Swelling
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Swelling Model (304 SS)
Dose Rate = 1dpa/year
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Temperature in Baffle-Former-Barrel
Assembly (30 EFPY “Out-in” Core Load)
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Swelling in Baffle-Former-Barrel
Assembly (30 EFPY)
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Data Needs for Void Swelling

® Evaluate Results of Functionality Analysis

— ANATECH Usermat routine contains a “consensus”
swelling model based on minimal PWR data.

— Incubation Doses
— Temperature 300-400°C
—316SS, 304SS, 347SS
— Cold work




Data Needs for Irradiation Creep/Stress
Relaxation

® Low Dose Transient Behavior

— Bolt load data indicates a delay before onset of stress
relaxation

® Material sensitivity




The Cracking Mechanisms

® SCC (Stress & CW)
® |ASCC (Stress and dose)
® Fatigue (Transient Loading)

Produce observable cracks
Most probable in regions of stress concentration

Crack observation generally implies VI-1/EVT-1 or UT
NDE | (EC not a primary tool for internals). Broken parts/gross
cracking detected with VT-3.

Evaluation Predict crack growth prior to next inspection.
Calculate critical crack size.




IASCC Effect of Irradiation Dose
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Data Needs for IASCC Initiation

® Exposure Times Greater than 3,000 hours

— 85% of 60yrs = 447,000 hrs

— Most existing lab failures < 600hrs

— No lab failures 1000-4000 hrs (<50% o)
® High Fluence 304 SS Plate Data

— Most lab data on 316 thimble tubes and bolts

— Applicable to baffle/shroud plates or former plates
® High Fluence Weld Data

— Most lab data on 316 thimble tubes and bolts

— Applicable to core shroud welds
® Standardized Test Methods




Data Needs for IASCC Crack Growth Rates

® High Fluence Weld Data
— Most lab data on 316 thimble tubes and bolts
— Applicable to core shroud welds
® Low/Intermediate Fluence Weld/HAZ Data
— Applicable to core barrel beltline welds
® High Fluence 304 SS Plate Data
— Most lab data on 316 thimble tubes and bolts
— Applicable to baffle/shroud plates or former plates
® No requirement to analyze flaws in bolts
— Calculate minimum bolting patterns and replace as necessary




Data Needs for Fatigue

® Determine Realistic Fatigue Parameters for Reactor Internals
(lower core plate, baffle bolts, ...)
— Low cycle (high strain) conditions have largest potential irradiation
and environmental effects
® Evaluate Impact of Draft Regulatory Guide DG-1144
— NRC intends to apply to license extension evaluations
— Small changes in SS fatigue curve
— New environmental correction factor (F_,)
® Environmental Correction Factors for Irradiated Materials
— Targeted testing to determine applicability of F_, to Irradiated
Materials
— Test conditions based on realistic fatigue parameters with maximum




The Wear Mechanism

® Difficult to compare or rank wear potential in
identifled components

Wear scars may be observed visually.
Physical measurements may be required
for evaluation.




Summary

® |&E Guideline recommendations available (MRP-227)

® Implementation of MRP-227 Guidelines will require
additional irradiated material properties for:

— Fracture Toughness

— Void Swelling

— |ASCC Susceptibility

— |ASCC Crack Growth Rates




Questions?
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PWR Internals Aging Management

		Screen all components for eight aging related degradation mechanisms

		Categorize likelihood and severity

		Functionality analysis of most critical components

		Provide Inspection and Evaluation Guidelines (MRP-227)

		Reactor Internals Aging Management Programs
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Summary of NUREG-1801 

Generic Aging Lessons Learned (GALL)

		Aging Management Program Elements 



Scope Definition

Preventive Actions

Parameters to be Monitored or Inspected

Inspection (Detection of Aging Effects)

Monitoring or Trending

Acceptance Criteria (Action Levels)

Corrective Actions

Confirmation

Administrative Controls 

Operating Experience Review (Reality Check)

		



Aging Management Strategy Input









 I&E Guidelines

Implementation
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The Embrittlement Mechanisms

		Irradiation Embrittlement (Dose & Temperature)

		Thermal Embrittlement (Temperature & Composition)





Changes in material properties 

Strength (increase)

Ductility (decrease)

Toughness (decrease)







Direct inspection not required.  Industry trending used to predict values.

NDE

Based on bounding toughness curves.  

Evaluation
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Irradiated Fracture Toughness





38 MPa√m

JIC = 38 + 175*e-0.3*dpa
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Materials Included:

Gaps

Highly irradiated weld materials

More data in general

Credible data
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Comparison of Aging/Irradiation Conditions
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Data Needs for Fracture Toughness

		Weld Data*



Required to determine critical crack sizes for inspection and evaluation of core shroud welds and core barrel welds

		CASS Data on field exposed materials



Difficult to simulate long-term synergistic aging/irradiation effects in high flux experiments

		High Fluence Effects on R-Curve



Most observations of fracture in high fluence materials indicate ductile fracture with limited resistance to crack extension

In large structures credit for crack growth resistance may be helpful

		Low Temperature Fracture Phenomenon



Multiple observations of low toughness, intergranular failures at room temperature in highly irradiated materials

Possible new kind of “ductile-to-brittle” transition?

Practical implications of this mechanisms unclear (not being considered in functionality analysis).

* Analysis of 316 bolting based on fraction of un-cracked bolts.  Fracture toughness not required.
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The Dimensional Stability Mechanisms

		Void Swelling (Temperature & Dose)

		Irradiation Enhanced Stress Relaxation/Creep (Dose & Stress)



Component Distortion

Modify Stress/Strain Distribution

Affects SCC, IASCC and Fatigue 

Distortion and its subsequent effects expected to be observable in visual exam.  

NDE

Based on detailed FE analysis to observe combined effects on stress and strain.  

Evaluation
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Structural Analysis Model

   Iterative Simulation of Aging

		FEA – ANSYS (elastic-plastic)



ANATECH Materials Subroutine

Calculate Properties at time t

Irradiated Mechanical Properties

Creep Rate

Swelling Rate



Update s / e for Dt

Iterate
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Baffle & Former

  Temperatures and Doses Sufficient for Swelling

Surface Temperature Results:

Out-In, BOC



Peak temperature in 2nd former (from bottom) from Out-In loading
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Swelling Model (304 SS)

 Dose Rate = 1dpa/year





Chart1


			550			550			550


			560			560			560


			570			570			570


			580			580			580


			590			590			590


			600			600			600


			610			610			610


			620			620			620


			630			630			630


			640			640			640


			650			650			650


			660			660			660


			670			670			670


			680			680			680


			690			690			690


			700			700			700


			710			710			710


			720			720			720


			730			730			730


			740			740			740


			750			750			750


			760			760			760


			770			770			770





10 Years


20 Years


30 Years


10 Years


20 Years


30 Years


Irradiation Temperature (oF)


Volumetric Swelling (%)


0.0039512799


0.0158051194


0.0355615187


0.0054657541


0.0218630163


0.0491917867


0.0075132068


0.0300528274


0.0676188616


0.0102646121


0.0410584486


0.0923815093


0.0139404775


0.0557619101


0.1254642978


0.0188236469


0.0752945875


0.1694128219


0.0252750056


0.1011000223


0.2274750502


0.0337526511


0.1350106043


0.3037738596


0.0448351812


0.1793407247


0.4035166306


0.0592498529


0.2369994117


0.5332486764


0.0779064767


0.3116259068


0.7011582903


0.1019380346


0.4077521385


0.9174423116


0.1327491498


0.5309965991


1.1947423479


0.1720736837


0.6882947348


1.5486631533


0.2220429058


0.8881716231


1.998386152


0.2852658586


1.1410634346


2.5673927278


0.3649237408


1.4596949633


3.2843136675


0.4648803407


1.8595213629


4.1839230666


0.5898107857


2.3592431428


5.3082970714


0.7453511172


2.9814044686


6.7081600544


0.9382714669


3.7530858678


8.4444432025


1.1766758924


4.7067035695


10.5900830314


1.4702322267


5.8809289068


13.2320900404





Sheet1


			


												t			10


												phidot			3.17E-08


												T			600			315.5555555556


																																							566.3505880756			1051.4310585361


																		10			20			30			40			10


															550			0.0039512799			0.0158051194			0.0355615187			0.0632204778			0.003951261									0.0000000317


															560			0.0054657541			0.0218630163			0.0491917867			0.0874520652			0.005465728


															570			0.0075132068			0.0300528274			0.0676188616			0.1202113095			0.0075131711


															580			0.0102646121			0.0410584486			0.0923815093			0.1642337943			0.0102645633									4.299370241


															590			0.0139404775			0.0557619101			0.1254642978			0.2230476406			0.0139404111									27.0860325181


															600			0.0188236469			0.0752945875			0.1694128219			0.3011783501			0.0188235572


															610			0.0252750056			0.1011000223			0.2274750502			0.4044000892			0.0252748852


															620			0.0337526511			0.1350106043			0.3037738596			0.540042417			0.0337524903												7.5965E+09


															630			0.0448351812			0.1793407247			0.4035166306			0.7173628988			0.0448349676						7.6384E-06


															640			0.0592498529			0.2369994117			0.5332486764			0.9479976469			0.0592495708


															650			0.0779064767			0.3116259068			0.7011582903			1.2465036272			0.0779061057


															660			0.1019380346			0.4077521385			0.9174423116			1.6310085539			0.1019375491						3.1536E+07			9.9452E+14


															670			0.1327491498			0.5309965991			1.1947423479			2.1239863963			0.1327485175									2.3956E+17


															680			0.1720736837			0.6882947348			1.5486631533			2.7531789392			0.1720728642						2.4088E+02


															690			0.2220429058			0.8881716231			1.998386152			3.5526864925			0.2220418483						4.8177E+02


															700			0.2852658586			1.1410634346			2.5673927278			4.5642537383			0.2852645001


															710			0.3649237408			1.4596949633			3.2843136675			5.8387798533			0.3649220029


															720			0.4648803407			1.8595213629			4.1839230666			7.4380854518			0.4648781267


															730			0.5898107857			2.3592431428			5.3082970714			9.4369725713			0.5898079767


															740			0.7453511172			2.9814044686			6.7081600544			11.9256178744			0.7453475674						2.3154085341			4.6308170681


															750			0.9382714669			3.7530858678			8.4444432025			15.0123434711			0.9382669984


															760			1.1766758924			4.7067035695			10.5900830314			18.826814278			1.1766702884									2.3154085341


															770			1.4702322267			5.8809289068			13.2320900404			23.5237156273			1.4702252247








Sheet2


			








Sheet3


			










 

     

*



Temperature in Baffle-Former-Barrel Assembly (30 EFPY “Out-in” Core Load)

Cut through mid-plane of former level 4.



Dark Blue ~ 550oF



Light Blue ~ 600oF



Orange ~ 760oF
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Swelling in Baffle-Former-Barrel Assembly (30 EFPY)

Cut through mid-plane of former level 2.



Dark Blue < 1%



Light Blue ~ 3%



Orange > 15%
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Data Needs for Void Swelling

		Evaluate Results of Functionality Analysis



ANATECH Usermat routine contains a “consensus” swelling model based on minimal PWR data.

Incubation Doses

Temperature 300-400oC

316SS, 304SS, 347SS

Cold work
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Data Needs for Irradiation Creep/Stress Relaxation

		Low Dose Transient Behavior



Bolt load data indicates a delay before onset of stress relaxation

		Material sensitivity
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The Cracking Mechanisms

		SCC (Stress & CW)

		IASCC (Stress and dose)

		Fatigue (Transient Loading)



Produce observable cracks

Most probable in regions of stress concentration

Crack observation generally implies VT-1/EVT-1 or UT (EC not a primary tool for internals).  Broken parts/gross cracking detected with VT-3.

NDE

Predict crack growth prior to next inspection.

Calculate critical crack size.  

Evaluation
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IASCC Effect of Irradiation Dose



		Irradiation dose shows no apparent effect on CGR in the results from this dataset
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IASCC Crack Growth Rate: Curve Fitting

95th Percentile Curve: CGR = (7.84E-10)*K2.5 



		Assumed stress intensity exponent of 2.5

		~30% of the data was zero and is not on this plot
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Data Needs for IASCC Initiation

		Exposure Times Greater than 3,000 hours



85% of 60yrs = 447,000 hrs 

Most existing lab failures < 600hrs

No lab failures 1000-4000 hrs (<50% sy) 

		High Fluence 304 SS Plate Data



Most lab data on 316 thimble tubes and bolts

Applicable to baffle/shroud plates or former plates

		High Fluence Weld Data



Most lab data on 316 thimble tubes and bolts

Applicable to core shroud welds

		Standardized Test Methods







 

     

*



Data Needs for IASCC Crack Growth Rates

		High Fluence Weld Data



Most lab data on 316 thimble tubes and bolts

Applicable to core shroud welds

		Low/Intermediate Fluence Weld/HAZ Data



Applicable to core barrel beltline welds

		High Fluence 304 SS Plate Data



Most lab data on 316 thimble tubes and bolts

Applicable to baffle/shroud plates or former plates

		No requirement to analyze flaws in bolts 



Calculate minimum bolting patterns and replace as necessary
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Data Needs for Fatigue

		Determine Realistic Fatigue Parameters for Reactor Internals (lower core plate, baffle bolts, …) 



Low cycle (high strain) conditions have largest potential irradiation and environmental effects

		Evaluate Impact of Draft Regulatory Guide DG-1144



NRC intends to apply to license extension evaluations

Small changes in SS fatigue curve

New environmental correction factor (Fen)

		Environmental Correction Factors for Irradiated Materials



Targeted testing to determine applicability of Fen to Irradiated Materials

Test conditions based on realistic fatigue parameters with maximum expected Fen value
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The Wear Mechanism

		Difficult to compare or rank wear potential in identified components



Wear scars may be observed visually.  Physical measurements may be required for evaluation.
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Summary

		I&E Guideline recommendations available (MRP-227)

		Implementation of MRP-227 Guidelines will require additional irradiated material properties for: 



Fracture Toughness

Void Swelling

IASCC Susceptibility

IASCC Crack Growth Rates
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Questions?
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Upflow Conversion – 


Baffle / Barrel Bolt Analysis and Replacement Guidlines
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Example -  Reactor Internals
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Baffle/Barrel Region Geometry








Typical Thermal Shield Downflow Plant
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Upflow Conversion – Baffle / Barrel Bolting


Historical Background 


			Hydraulic induced instability or vibration of fuel rods caused by a high velocity jet of water could lead to cladding disruption and disbursement of the uranium into the coolant


			This jet is created by high pressure water being forced through gaps between the internals baffle plates surrounding the core
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“Baffle Jet” Phenomenon
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Lower Internals Assembly/Baffle-Barrel Region








Eight Former Levels
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Typical Full Length Baffle/Baffle Edge Bolting
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Bolt Loss of Function During Normal Reactor Operation


			Bolt loss of function may result in increased baffle gaps which could result in increased jetting and fuel rod instability


			Hydraulic induced instability or vibration of fuel rods caused by a high velocity jet of water could lead to cladding disruption and disbursement of the uranium into the coolant


			This jet is created by high pressure water being forced through gaps between the internals baffle plates surrounding the core


			Indian Point 3 cycle 9/10 refueling outage identified three peripheral corner assemblies with fuel degradation
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Upflow Conversion





			Conversion from a downflow to the upflow design is accomplished by plugging the flow holes in the core barrel and adding required flow holes in the top former level
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Schematic of Upflow Conversion





NOKBOLT.PRE - DRF





 


     


*





Schematic of Core Barrel Flow Hole Plug





NOKBOLT.PRE - DRF





 


     


*





Comparison of Downflow and Upflow Baffle Plate Pressure Differential


During Normal Reactor Operation


Elevation Above Lower Core Plate  (in)


Pressure Difference Across Baffle (psi)
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Comparison of Downflow and Upflow Baffle Plate Pressure Differential


During a LOCA Event (Two Phase)


For a Typical 4 loop Plant


* Based on 1987 DEPRES Methodology
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Domestic Westinghouse Plants that have Performed Upflow Conversion Programs


			The upflow conversion of reactor internals in operating plants is a proven modification.  The domestic WOG plants which have performed an upflow conversion are:





North Anna 1


Beaver Valley 1


Farley Units 1 & 2


McGuire Units 1 and 2


Trojan 1


Point Beach Units 1 and 2


Watts Bar Units 1 and 2
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Upflow Conversion Strategies


			Evaluate/Assess RCS system and components





Synergy with RSG, Power Upratings, Bolt Replacement and Fuel Change Programs


			In combination with baffle/former bolt replacement, can eliminate the LR inspection committement of three bolt inspections during the LR term


			Eliminates serverity of issue if bolt degradation is found


			Careful planning can significantly reduce outage critical path times


			Synergy with EDM tools utilized for a UHTR program
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Upflow Conversion- Summary


			The upflow conversion of reactor internals in operating plants is a proven modification


			Converting to upflow constitutes the best long-term technical solution to baffle jetting throughout balance of plant life


			Upflow conversion provides ample margins against fuel rod instability due to baffle jetting


			An upflow conversion can reduce baffle plate bolt loads during faulted conditions and thus require a reduced number of intact and functional bolts  than required with the original downflow configuration
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